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Abstract
In this paper we study a planar-convex lens where the focal point is calculated
numerically and analytically beyond the paraxial approximation within the
context of geometrical optics. We consider this problem as an appropriate and
useful example to fill the gap found in physics and optics courses between the
simplicity of the paraxial approximation and the complexity of the theory of
aberrations, and it can be used as an introduction to non-paraxial behaviour
even when teaching general physics courses. We show in a simple way how
beyond the paraxial approximation the focal distance is not unique, and how it
depends on the distance of the incoming ray to the optical axis. We show the
importance of the caustic surface, which is calculated analytically, and its effect
on the position of the point with the highest concentration of light, which is
defined as the optimal focal distance of the lens. Finally, we also present some
simulations showing light distributions in screens placed at different distances
from the lens, to illustrate our results.

1. Introduction

Geometrical optics is the first step in any course on optics because the concept of light rays
is usually very intuitive for the students, who can understand the basics of light propagation
(reflexion, refraction, etc) without using the more complicated mathematical apparatus of
the wave formalism. Within the context of geometrical optics, the behaviour of lenses,
mirrors, etc is usually explained in the majority of general physics textbooks [1] and also in
simple ray-tracer algorithms [2] considering the paraxial approximation, mainly because of
its mathematical simplicity. The study of non-paraxial behaviour (or aberrations) is usually
restricted to higher-level and more specific texts [3], for which a good mathematical level is
required. Nevertheless, there is a large conceptual gap between both approaches, from the
simplicity of the paraxial behaviour to the abstract view of the theory of aberrations.

In this paper, and to fill the above-mentioned gap to some extent, we present the problem
of determination of the focal point of a planar-convex lens beyond the paraxial approximation,
which is an example of spherical aberration. Our purpose is two-fold: on the one hand the
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Figure 1. An incoming ray parallel to the optical axis. Inset: the behaviour of the paraxial rays.

mathematical level required in our study is not too restrictive, and therefore the present work
can be used as an introductory example of non-paraxial behaviour even in a general physics
course. On the other hand, although spherical aberration is discussed qualitatively from a
theoretical point of view in many textbooks [3], examples solved quantitatively like the one
presented here are not common at all.

In addition, the problem we present in this paper is appropriate for analytical calculation
(using approximation methods) but also for a numerical approach, and therefore it can be used
as an introductory example of the use of the computer to solve physical problems, especially
when simulating light distributions, because the numerical methods required are minimal.
This is the reason why we present both the numerical and the analytical approach (see below).

This paper is organized as follows. In section 2, we introduce the planar-convex lens and
present the paraxial focal distance. In section 3, we explain how this result is modified for non-
paraxial rays, and how the focal distance is not unique. Section 4 is devoted to determination
(both numerically and analytically) of the optimal focal point of the lens, by introducing the
concept of a caustic surface for which an analytical general expression is given. In section 5,
we present the light distributions observed at different distances of the lens obtained by exact
numerical calculation.

2. The paraxial approximation

Let us consider a planar-convex lens with an index of refraction given by n, and an incoming
light ray parallel to the optical axis, as represented in figure 1. We place the origin of the
coordinates at O, the vertex of the lens. The ray enters the lens at a distance h from the optical
axis.

At the point of incidence I the ray is refracted, and therefore it must satisfy the law of
refraction,

n sin α = sin β, (1)

where α and β are the angles of incidence and refraction, respectively (figure 1), and we
consider that there is air surrounding the lens (nair = 1). According to the geometry of the
problem presented in figure 1, we can easily calculate sin α:

sin α = h

R
. (2)



On the focal point of a lens: beyond the paraxial approximation 233

In addition, to obtain sin β, we have the following angular relation:

π

2
− α + γ + β = π, (3)

from where one obtains directly

β = π

2
− (γ − α). (4)

Thus,

sin β = sin
(π

2
− (γ − α)

)
= cos(γ − α). (5)

Using the trigonometric relation cos(x −y) = cos x cos y +sin x sin y, and taking into account
that according to figure 1 we have

sin γ = f + d√
(f + d)2 + h2

, cos γ = h√
(f + d)2 + h2

, (6)

we obtain finally

sin β = h

R

√
(R2 − h2) + f + d√

(f + d)2 + h2
. (7)

If we note that

d = R −
√

R2 − h2, (8)

we can introduce (2) and (7) into (1) and solve the latter equation for f, which in general will
be a function of h, n and R. Up to now the calculation is exact. When considering the paraxial
approximation, only the rays very close to the optical axis are taken into account, i.e. rays for
which h is very small (or, conversely, lenses for which R is large). In this case it is easy to
show that, up to the first order in h, we have:

sin α = h

R
, d � 0, sin β � h

R

R + f

f
. (9)

Introducing these latter values into equation (1) and solving for f, we obtain the paraxial focal
distance fp:

fp = R

n − 1
. (10)

In this equation there is no dependence of fp on h, and this implies that within the paraxial
approximation all the incoming rays parallel to the optical axis will converge at the same
paraxial focal point Fp, placed at a distance fp of the vertex of the lens, as shown in the inset of
figure 1. Thus within paraxial behaviour the light forms a perfect point image and aberrations
do not exist.

3. Beyond the paraxial approximation

We noted previously that the paraxial approximation is only valid for light rays very close to
the optical axis. In this section we study the case of non-paraxial rays, for which we want
to obtain the corresponding focal distances. Our system is the same as the one considered
in the previous section, and therefore the calculations are identical to the ones we carried
out in equation (1) to equation (8), prior to introducing the paraxial approximation in
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Figure 2. The behaviour of the focal distance f as a function of h for a lens where n = 1.5 with
two different radii of curvature.

equation (9). In this way, if we introduce (2) and (7) in (1) and solve the latter equation for f,
which in general will be a function of h, n and R, we obtain:

f (h, n,R) = R
−n

√
R2 − h2 +

√
R2 − n2h2 + nR

n
√

R2 − h2 − √
R2 − n2h2

. (11)

It is straightforward to check that at the limit of the paraxial rays (h = 0) we recover the
paraxial focal distance fp:

f (0, n, R) = R

n − 1
= fp. (12)

Equation (11) indicates that for a fixed lens (i.e. for fixed n and R) there exists a different
focal distance for any h. Thus beyond the paraxial approximation the focal distance of a lens is
not univocally defined, and the corresponding image cannot be a point image. The behaviour
of f as a function of h for two values of R and for n = 1.5 is shown in figure 3, where the
paraxial focal distances are also indicated as a reference. Useful information obtained from
figure 2, and not directly evident from equation (11) unless we maximize f as a function of
h, is that the maximum focal distance as a function of h is precisely fp, i.e. the rays very
close to the optical axis are the ones which converge furthest from the lens, and any other rays
converge closer. From now on for simplicity we omit the dependence of f on n and R, and we
write simply f (h).

In principle, equation (11) is valid for any h value provided that the incoming ray is
refracted by the lens. It is clear that when total internal reflection is produced at the incidence
point I, equation (11) is not valid anymore. The limiting value of h (hlim) separating the region
of refraction and the region of total internal reflection can then be calculated as the h value for
which the incidence angle α corresponds to the critical angle. If this is the case we have that
β = π/2 and equation (1) is now:

n sin α = 1. (13)

By using equation (2) one gets

hlim = R

n
. (14)
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Figure 3. The behaviour of incoming rays parallel to the optical axis. The thick curve represents
the caustic surface. The vertical lines represent screens placed at different distances from the lens
(see text).

Thus equation (11) is valid for any h ∈ [−hlim, hlim]. Actually, in a real lens, h is limited
usually to a much smaller value than hlim in order to make the deviations from the paraxial
behaviour small. This limitation is mainly done by controlling the size of the lens hmax (see
figure 1) in such a way that hmax < hlim, or even hmax � hlim. In the following, we consider
that the incoming rays propagate with h ∈ [−hmax, hmax], and that in this range equation (11)
is always correct.

4. Optimal focal distance of the lens and the caustic surface

We have discussed already that equation (11) implies that there is no single focal distance
beyond the paraxial approximation, and that for an incoming ray parallel to the optical axis,
the larger the h, the shorter the corresponding focal distance f (h). Thus, the minimum focal
distance is given by f (hmax), and the maximum focal distance is precisely the paraxial focal
distance fp. The behaviour of several rays parallel to the optical axis in this case is shown
qualitatively in figure 3.

In this context and as we mentioned above, it is clear that a point object placed in the
optical axis very far from the lens will not produce an image point placed at the focal point
Fp. Instead, if we put a screen after the lens perpendicular to the optical axis, we would
observe a spot of light of finite (not zero) size. The size of this spot depends on where the
screen is placed. In figure 3 we show, as vertical lines, four hypothetical screens placed at
different distances from the lens. With a grey rectangle we indicate in each case the size of
the corresponding spot of light we would observe in these screens, obtained simply as the area
of the screen reached by the rays.

We could define operationally the optimal focal point of the lens1 as the point where one
has to put the screen in such a way that the observed spot of light presents the minimum size,
i.e. with the highest average concentration of light. We can discuss qualitatively where this
point is. Let us consider a screen as in case (1) in figure 3, which is placed close to the lens.
It is clear that the spot of light is large simply because the rays have not converged yet. If
we move the screen to the right (as in case (2) in figure 3), some of the rays have converged
already and the size of the spot decreases. If we displace the screen a little bit more to the right

1 The image blur in this point is usually called the circle of least confusion. See, for example, reference [3],
page 525.
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(case (3) in figure 3) the size of the spot decreases even more. However, case (3) precisely
corresponds to the critical position of the screen where the smallest spot of light is obtained,
and thus to the optimal focal distance, because if we continue moving the screen to the right,
the rays coming from ±hmax are now farthest from the optical axis, producing a larger spot
of light, as in case (4) in figure 3. How can this optimal focal distance then be calculated
quantitatively? For any position of the screen to the left of position (3), the size of the spot of
light is given by the caustic surface, i.e. the envelope of all the rays emerging from the lens,
which is shown as a solid thick line in figure 3. For any position of the screen to the right of
position (3), the size of the spot of light is given by the rays coming from ±hmax. Thus, the
critical position (3) (and thus the optimal focal distance) is given by the point where the caustic
surface intersects the ray coming from −hmax. It is obvious that the problem is symmetric,
and that the optimal focal point is also given by the intersection between the lower branch of
the caustic surface and the ray coming from hmax.

The determination of this optimal focal point can be done numerically in a simple way,
but also analytically. In order to do both types of calculation, we need first to know in general
the equation of a generic incoming ray travelling at distance h from the optical axis. Let us
consider the vertical axis as the y axis, and the horizontal axis as the x axis, and let us put the
origin of coordinates at the vertex of the lens, as in figure 1. For a generic ray we already know
two points of its trajectory. The first one is the incidence point I, and according to the geometry
of the problem (see figure 1) its coordinates are (

√
R2 − h2 − R, h). The second one is the

point where this ray intersects the optical axis (now the x axis), because its coordinates are
(f (h), 0), where f (h) is the focal distance given by equation (11). Using these two points it
is straightforward to obtain the equation of the trajectory of the ray (y(x, h)) which of course
is a straight line:

y(x, h)= Rh(
√

(R2 − n2h2) + nR − n
√

(R2 − h2))√
(R2 − n2h2)

√
(R2 − h2) + nh2

− h(n
√

(R2 − h2) −
√

(R2 − n2h2))√
(R2 − n2h2)

√
(R2 − h2) + nh2

x.

(15)

This equation gives the distance y from the optical axis of a generic ray (i.e. with a given
h value) at any position x of its trajectory once it has been refracted by the lens. From this
result, it is possible to find the optimal focal distance both numerically and analytically, as we
illustrate in the following.

4.1. Numerical solution

The numerical solution of the problem is then easy from now on. Let us consider a dense
set of N rays (with very large N) with h distributed in the interval [0, hmax]. For a given h
(i.e. for a particular ray) the corresponding trajectory is given by (15). Wherever the optimal
focal point is, it must be in the interval [f (hmax), fp] because these are, respectively, the
smallest and largest focal distances of all the incoming rays. Thus, we select again a dense
set of x values with x ∈ [f (hmax), fp]. For any x, we study y(x, h) as a function of h using
(15) and we obtain the maximum y value of all the rays at point x. This maximum value is
precisely the value of the caustic surface at point x (see figure 3). If we proceed in this way
in the whole interval [f (hmax), fp], we obtain numerically the caustic surface. The optimal
focal point can then be found numerically as the intersection point of the caustic surface and
the ray coming from −hmax.

A numerical example of the results of this algorithm is shown in figure 5, where we
consider a lens where R = 10 cm, n = 1.5 and hmax = 3 cm. In this case, f (hmax) = f (3) �
17.89 cm and fp = 20 cm, so we consider x values in the range [17.89, 20] cm. We show
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Figure 4. Numerical example to determine the optimal focal distance fo of a planar-convex lens
where R = 10 cm, n = 1.5 and hmax = 3 cm. The solid thick curve represents the caustic surface
obtained numerically. The dotted line represents the ray coming from −hmax = −3 cm. The
intersection point gives the optimal focal distance fo and the minimum radius yo of the spot of
light.

with a solid thick line the caustic surface (actually, the upper branch) and with a dotted line
the trajectory of the ray coming from −hmax = −3 cm, obtained directly from (15). For this
example, we find numerically that the caustic surface and the ray coming from −hmax intersect
at x = 18.398 cm, and therefore here precisely is the optimal focal point Fo or, if we prefer,
the optimal focal distance (fo) is equal to fo = 18.398 cm. From the same plot we can obtain
the size of the spot of light we would observe in a screen as a function of the position x of the
screen. From Fo to the left, the size (the radius) of the spot is given by the caustic surface,
while from Fo to the right, the size is given by the ray coming from −hmax. In the example
shown in figure 5, the radius of the spot in Fo(yo) is yo = 0.084 cm, which is of course the
minimum possible value. As a reference, the size of the spot in f (hmax) is 0.127 cm, while in
the paraxial focal point it is 0.345 cm.

4.2. Analytical solution

In the previous section, we have explained how to numerically solve the problem, and we
have solved an example. In this section we try to solve the problem analytically, and once this
is done we will compare both results. It is clear that the most difficult part in the analytical
derivation is the obtention of the caustic surface, so we start by doing this calculation.

To obtain the caustic surface, we restrict ourselves to its upper branch, i.e. we calculate
the envelope of all the rays with positive h, and thus with h ∈ [0, hmax] (see figure 4). At any
x point the caustic surface is given by the maximum value of the y coordinates of all the rays
with h ∈ [0, hmax]. Thus we need to maximize y as a function of h to obtain which ray (which
h value) gives the caustic surface at point x. The distance y of a ray from the optical axis at
point x for a generic ray (for any h) is given in equation (15). In general, we see that y is a
function of x, h, n and R, but as we consider that our lens is fixed, we assume that R and n are
constant, and we write y(x, h). To maximize y as a function of h, we impose the condition

∂y(x, h)

∂h
= 0. (16)
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This partial derivative can be calculated because y(x, h) is given in (15), so in principle
equation (16) could be solved to find the h value which maximizes y for any x. The problem
is that the dependence of y on h in (15) is not simple, and therefore the dependence of its
derivative is also complicated. To simplify the problem, we take the derivative (actually, only
the numerator is needed, because of (16)) and we expand it in a Taylor series in powers of
h up to the order h2. If we do so, and we consider that this expansion (the numerator) must
equal 0 according to (16), we arrive at

(R3(xn − x − R)) +
(

1
2Rn(−x − R + 3Rn + xn)

)
h2 = 0, (17)

for which the corresponding positive solution (we are restricted to the interval [0, hmax]) is

hC(x) =
√

2R

√
− (xn − x − R)

n(−x − R + 3Rn + xn)
. (18)

Note that we call hC to the solution of (17) because it is the h value which maximizes y for
any x, and thus gives the value of the caustic surface C(x), which can then be obtained as

C(x) = y(x, hC(x)), (19)

where y(x, h) is the one given in (15). If we introduce (18) into (15) according to (19), we
obtain a large expression for C(x). Again, we can simplify the expression by expanding C(x),
although now it is more convenient to expand C(x) in powers of R/(n − 1) − x. If we do so,
and we consider only the first two terms in the expansion and simplify, we get

C(x) = 2
√

6

9n
√

R
(R − (n − 1)x)3/2 +

√
6(3n2 + 5n − 5)

54(n
√

R)3
(R − (n − 1)x)5/2, (20)

which is our final result for the caustic surface C(x). Note that to obtain C(x) we have
performed an expansion in powers of R/(n − 1) − x, but as according to equation (10)
R/(n − 1) is precisely the paraxial focal distance fp, our expression for C(x) will be very
accurate in the vicinity of the paraxial focal point Fp, which is precisely the region of interest
(see figure 4). Actually, even the first term of the right-hand side of (20) is very accurate
to describe the caustic surface, the second term being a correction that should be taken into
account far enough from Fp. To show the validity of equation (20), in figure 5 we show the exact
caustic surfaces obtained numerically for three different lenses as well as the corresponding
caustic surfaces given analytically by (20).

Once we have the expression for the caustic surface C(x) given in (20), determination
of the optimal focal distance is simple, because the optimal focal point is given by the
intersection between the caustic surface C(x) and the trajectory of the ray coming from
−hmax, y(x,−hmax), obtained from (15). Thus, one has to solve the following equation:

y(x,−hmax) = C(x). (21)

The analytical solution of this equation is not simple. Even in the case of considering
the simplified version of C(x), i.e. the first term of the right-hand side of (20), one has a
cubic equation in x with complicated coefficients. It is better to solve (21) numerically. If
we consider the same example as the one considered before, (R = 10 cm, n = 1.5 and
hmax = 3 cm), the solution of (21) is x = fo = 18.402 cm, which is practically identical
to the value obtained in the previous section solving the whole problem numerically (x =
fo = 18.398 cm). Thus, the graphical solution of equation (21) is identical to the one shown
in figure 5.
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Figure 5. The caustic surfaces obtained numerically (solid curves) and analytically (circles) for
three different lenses. The numerical values of the parameters are, from left to right, R = 10, 15
and 20 cm, and n = 1.5, 1.6 and 1.7 respectively.

5. Light distribution

In a previous section we have addressed the problem of finding the point where the spot of
light presents the minimum size, which by definition is the optimal focal point. Now we ask
in general about how the light is distributed in the screen, i.e. how the rays that reach the
screen are distributed, depending on the distance of the screen to the lens. This problem can
be simulated numerically in an exact form using equations given in previous sections, and is
very illustrative. It is enough to consider a large number N of incoming rays parallel to the
optical axis uniformly distributed2 in the lens. Due to the symmetry of rotation of the problem
with respect to the optical axis, a generic incoming ray reaches the circular lens at a distance
ρ from the optical axis and with a polar angle φ, such that ρ ∈ [0, hmax] and φ ∈ [0, 2π ].
Given a screen placed at a distance x from the lens, this generic ray will impact the screen at
polar coordinates (y(x, ρ), φ), where y(x, ρ) is given exactly in (15). In figure 6 we show the
results of this simulation where N = 10 000 rays for a planar convex lens where R = 10 cm,
n = 1.5 and hmax = 3 cm. In this figure, we plot the light distribution in a screen placed at
six different distances from the lens, taking into account that each white spot corresponds to
a ray. The horizontal and vertical scales are the same for the six cases shown in figure 6, each
one corresponding to a square of 0.35 cm × 0.35 cm, and the corresponding distances are: (a)
x = 16 cm, (b) x = 17.5 cm, (c) x = 17.9 cm, (d) x = fo = 18.398 cm, (e) x = 19 cm and
(f) x = fp = 20 cm.

Cases (a) and (b) in figure 6 correspond qualitatively to case (1) in figure 3. None of
the rays have converged yet, and the bright circle limiting the spot in both cases corresponds
to the caustic surface, the diference being that in case (b) the rays are closer to convergence.
Case (c) corresponds qualitatively to case (2) in figure 3. The bright external border is again

2 To generate rays, or in general, points uniformly distributed in a circle, it is convenient to use polar coordinates
(ρ, φ). Nevertheless, one has to be careful in doing this. At first, if the radius of the circle is R, one may think
that it is enough to generate random points (ρ, φ) with ρ uniformly distributed in [0, R] and φ uniformly distributed
in [0, 2π ]. Although this assumption is correct for φ, it is wrong for R, because this procedure leads to a higher
concentration of points close to the origin (i.e. a non-constant surface density) due to the fact that the elemental
surface increases with ρ. To avoid this spurious effect, one has to generate ρ values using a probability distribution
of the type P(ρ) = 2ρ/R2.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Distributions of light in screens placed at different distances from the lens (see text).
The optimal focal distance corresponds to case (d). The paraxial focal distance corresponds to
case (f).

the caustic surface, and as some of the rays have converged already, a bright spot at the
centre (the optical axis) can be seen. Case (d) corresponds to the optimal focal distance
(case 3) in figure 3. Now the size of the light distribution is reduced to its minimum size,
the bright external circle again represents the caustic surface, and the bright spot at the centre
is produced because many rays are converging in that region. Case (e) corresponds to an
intermediate position between the optimal focal point and the paraxial focal point, qualitatively
equivalent to case (4) in figure 3. Now the caustic surface is closer to the optical axis, and
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the bright circle is then smaller than in previous cases. But there are rays which converged
before and which now are far from the optical axis forming the cloud of points surrounding
the bright circle. Case (e) corresponds to the paraxial focal distance. Now, the caustic has
collapsed into the optical axis, and therefore the bright spot at the centre is produced by the
paraxial rays. The cloud of points around the bright centre is larger than before, because the
rays which converged first are now very far from the optical axis.

Although the results shown in figure 6 are obtained for a particular example, the shapes of
the different spots are rather general. Using a simple magnifying glass, for example, students
can experiment with the sun and a piece of paper used as a screen by observing the spots of
light formed when varying the relative distance between the paper and the magnifying glass,
and can compare the observations with the spots shown in figure 6. Of course when doing
this the students have to be warned about the adequate precautions required to use magnifying
glasses to focus sunlight (i.e. to prevent the direct focusing of sunlight into the eyes, or to
prevent the risks of burning objects). In addition, and as the computer simulations needed to
produce figure 6 are rather simple, it is a good opportunity for students to use the computer
and compare the results with real observations.

Determination of the optimal focal point of a lens is of fundamental importance in many
optical systems, such as in astronomic devices. When taking pictures of far-away stars the
film must be placed precisely at the optimal focal point of the telescope in order to observe
the smallest spot of light (as shown in case (d) of figure 6), and therefore the maximum
resolution3.

6. Conclusions

We have presented an example of an optical system studied within the context of geometrical
optics, but going beyond the paraxial approximation. The problem we have solved corresponds
to determination of the optimal focal distance of a planar-convex lens. This example can be
useful as an introduction to the theory of aberrations, because the mathematical level required
is not restrictive. We have shown that, beyond the paraxial approximation, the focal distance
is not unique, and also the importance of the caustic surface in order to determine the optimal
focal distance of the system, and its relevance in many optical systems. We have presented
the analytical and the numerical solution of the problem, and also computer simulations of
the light distributions at different distances from the lens. This example is also appropriate
to illustrate the use of the computer to simulate physical problems, because the numerical
concepts involved are very simple, and also because the students can compare the results of
the simulation with real observations carried out with a simple magnifying glass.
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