Magnetismo

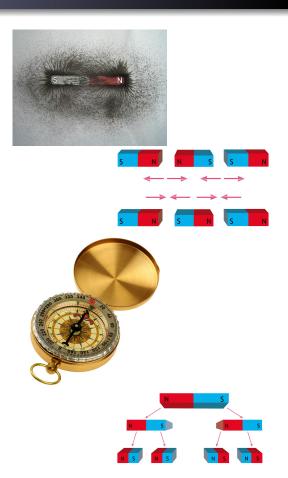
Física II-IC/IS

9 de Mayo de 2019

Física II-IC/IS

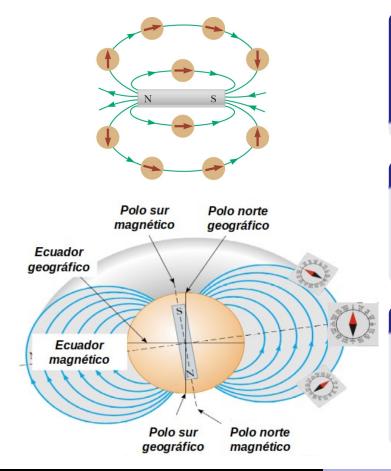
Magnetismo

Qué es el Magnetismo



Magnetita o Fe_3O_4

Propiedades de los Imanes


- Tienen dos Polos, Positivos y Negativos.
- Polos Opuestos se Atraen y polos Iguales se Repelen.
- Se orientan en presencia de un Campo Magnético.
- Los polos son inseparables, es decir NO existe el monopolo magnético.

Física II-IC/IS

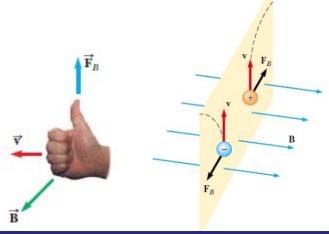
Magnetismo

El Campo Magnético Terrestre

La configuración magnética del campo magnético terrestre es como la de un imán barra ubicado en el centro de la tierra

Declinación magnética

El campo magnético terrestre no está perfectamente alineado con los polos geográficos norte-sur.


Inversión de los polos

Ocurrió varias veces en el último millón de años. La última fue hace 700.000 años y se estima que podría revertirse nuevamente en 2.000 años.

$$\vec{F} = q\vec{v} \times \vec{B} \tag{1}$$

ullet q: carga de la partícula.

 \bullet \vec{v} : Velocidad de la partícula.

• \vec{B} : Campo Magnética.

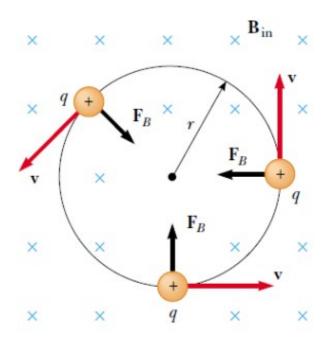
Si la partícula cargada está quieta $(\vec{v} = 0)$, no siente fuerza alguna. muestra la figura.

Si la partícula cargada tiene una velocidad \vec{v} entonces la dirección de la fuerza depende de $\vec{v} \times \vec{B}$ y del signo de q.

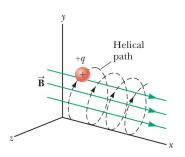
Física II-IC/IS

Magnetismo

Unidades y Magnitudes


Unidad de Campo Magnético: **Tesla** $T = \frac{N}{A \cdot m}$ $1T = 10^4 G$

Source of Field	Field Magnitude (T)
Strong superconducting laboratory magnet	30
Strong conventional laboratory magnet	2
Medical MRI unit	1.5
Bar magnet	10^{-2}
Surface of the Sun	10^{-2}
Surface of the Earth	$0.5 imes 10^{-4}$
Inside human brain (due to nerve impulses)	10^{-13}


Movimiento de una partícula cargada

$$\Sigma F = ma_c$$

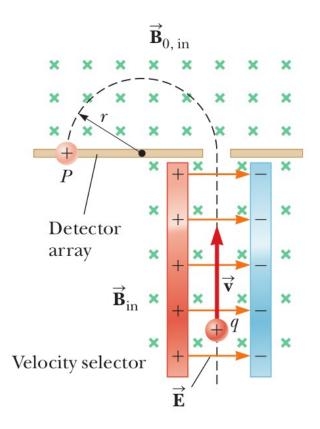
$$qvB = \frac{mv^2}{r}$$

$$r = \frac{mv}{qB}$$


$$\omega = \frac{v}{r} = \frac{qB}{m}$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}$$

Física II-IC/IS


Magnetismo

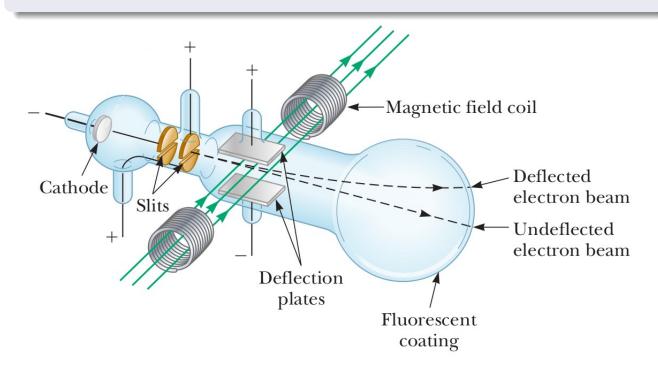
Selector de Velocidades

$$v = \frac{E}{B}$$

Espectrómetro de Masas

$$r = \frac{mv}{qB_0}$$

$$\frac{m}{q} = \frac{rB_0}{v}$$


$$\frac{m}{q} = \frac{rB_0B}{E}$$

Física II-IC/IS

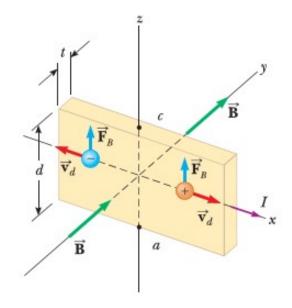
Magnetismo

Determinación de la relación q/m

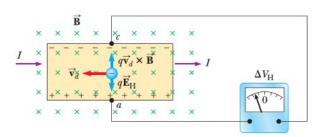
Experimento realizado por Thompson en 1897

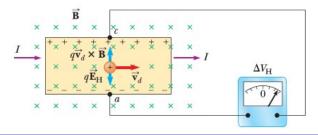
Fuerza Magnética sobre un conductor de corriente

$$d\vec{F} = NqvAd\vec{l} \times \vec{B}$$

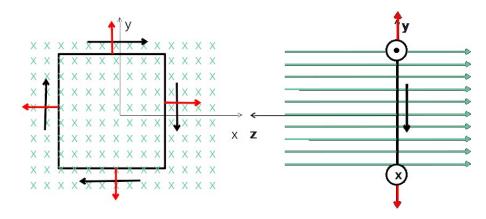

$$I = NqvA$$

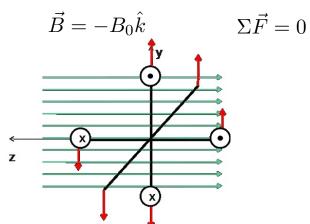
$$d\vec{F} = I\vec{l} \times \vec{B}$$


$$\vec{F} = \int NqvAd\vec{l} \times \vec{B}$$


$$\mathbf{B}_{\text{in}} \times \mathbf{X} \times \mathbf$$

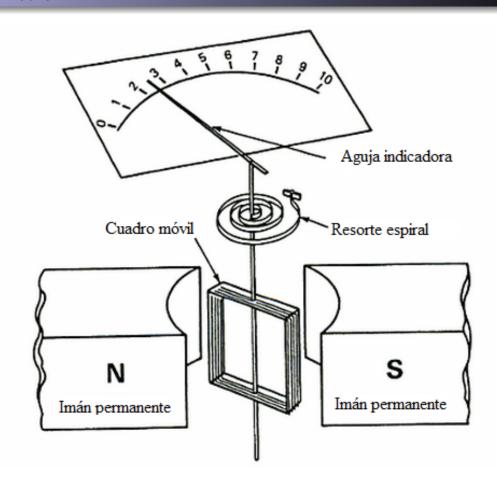
Efecto Hall




$$\Delta V_H = \frac{IBd}{nqA}$$

Fuerza y Torque sobre una espira

$$\begin{split} d\vec{\tau} &= \vec{r} \times d\vec{F} = \vec{r} \times (Id\vec{l} \times \vec{B}) \\ \vec{\tau} &= IA\hat{n} \times \vec{B}) \\ &= \vec{\mu} \times \vec{B}) \end{split}$$


Momento Dipolar Magnético

$$\vec{\mu} = IA\hat{n}$$

 $\hat{n} > 0 \text{ si } I \circlearrowleft$
 $\hat{n} < 0 \text{ si } I \circlearrowright$

Física II-IC/IS

Magnetismo

Galvanómetro

