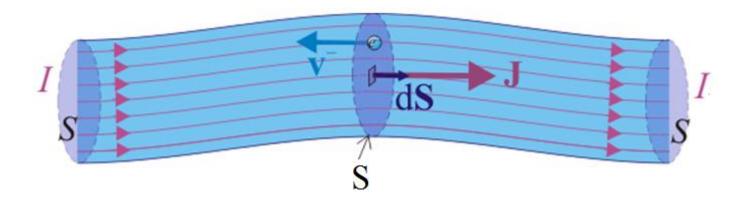

ESTUDIO DE LA RESISTIVIDAD ELÉCTRICA DE UN ALAMBRE METÁLICO

Corriente eléctrica



$$I \equiv \frac{dQ}{dt}$$

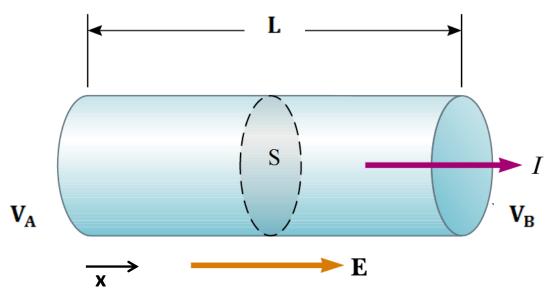
$$1 [Ampere] = \frac{1[Coulomb]}{1[segundo]}$$

J: densidad de corriente volumétrica

El conductor tiene una sección finita, S, y los portadores de carga fluyen a lo largo de líneas de densidad de corriente, **J**, estacionarias

$$I = \iint \overline{\mathbf{J}} \cdot \hat{\mathbf{n}} \, dS \implies$$

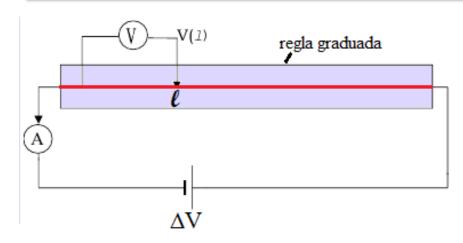
Ley de Ohm \Longrightarrow $\mathbf{J} = \sigma \mathbf{E}$


Donde " σ " [sigma] es la conductividad del material La inversa de σ es la resistividad

Resistividad
$$\rho$$
 [rho] o η [eta] $\rho = \frac{1}{\sigma} [\Omega \cdot m]$

es un parámetro característico del material y es una medida de la resistencia del material a la conducción de una corriente eléctrica

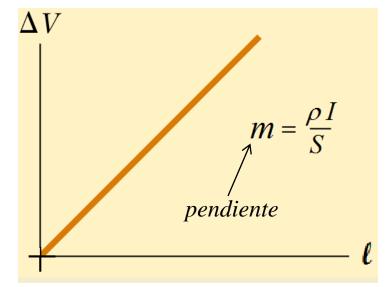
$$\mathbf{J} = \frac{1}{\rho} \mathbf{E}$$


Resistencia de un conductor rectilíneo de longitud L y sección S

Aplicando la Ley de Ohm y la definición de corriente se llega a una expresión para la resistencia, R, del conductor rectilíneo.

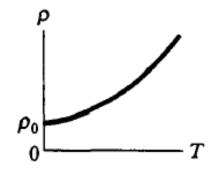
$$\begin{split} I = \int j.\,ds = jS = \sigma ES = -\frac{dV}{dx}\sigma S & dV = -\frac{I}{\sigma S}dx \\ V_A - V_B = \frac{I}{\sigma S}L & \rho = \frac{1}{\sigma} & V_A - V_B = \frac{\rho I}{S}L \\ V = R \ I & R = \frac{\rho L}{S} \end{split}$$

Determinación del Coeficiente de Resistividad - p-de un Alambre


$$V(\ell) = \left(\frac{I}{S}\rho\right) \cdot \ell \qquad m = \frac{I}{S}\rho$$

Se ajustan los datos mediante el **método de ajuste de cuadrados mínimos** y del
valor de la pendiente m se calcula ρ

Medir:


- Diámetro del alambre $D \rightarrow S$
- Corriente I
- $V(\ell)$, diferencia de potencial en función de ℓ

Graficar $V(\ell)$.vs. ℓ

Variación de la Resistividad con la Temperatura

$$\rho_{\rm T} = \rho_{\rm T0} [1 + \alpha. \Delta T + \beta. (\Delta T)^2 + \cdots]$$

α= coeficiente de variación lineal

β = coeficiente de variación cuadrático

 $\Delta T = T - T_0$

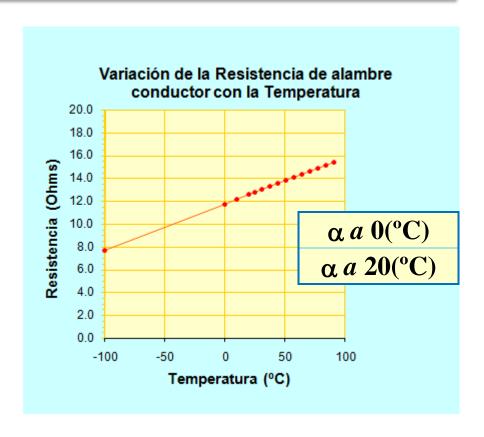
T₀= temperatura de referencia

Para pequeñas variaciones de temperatura:

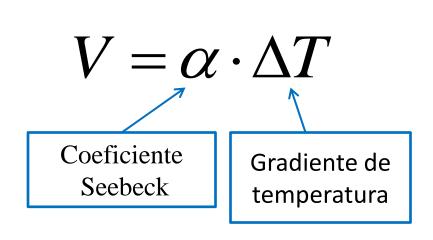
$$\rho_{\rm T} = \rho_{\rm T0}[1 + \alpha.\Delta T]$$

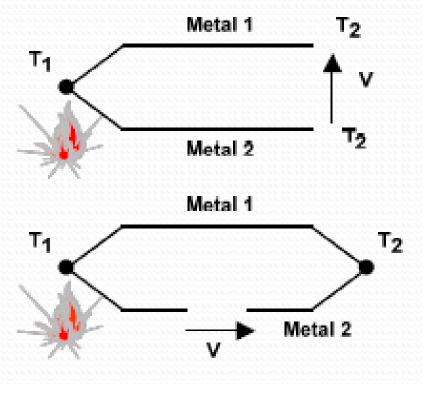
Multiplicando x A/L:

$$R_T = R_{T0}[1 + \alpha.\Delta T]$$


Determinación del Coeficiente lineal de variación de la Resistividad (ρ) con la Temperatura (T)

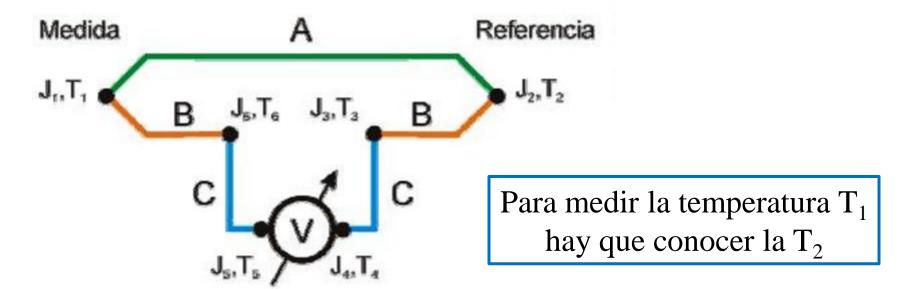
La resistividad de un conductor, a diferencia de la de un semiconductor, aumenta con la temperatura


$$R = R_0[1 + \alpha(T - T_0)]$$


Termocupla
Bobina
Envoltura de
Telgopor
Multimetro

V Fuente de Tensión
Continua

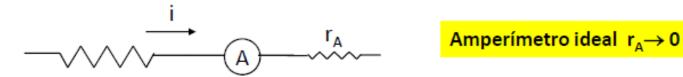
Efecto Seebeck (1822) (Thomas J. Seebeck Físico y médico alemán) Cuando las uniones de dos conductores de diferentes conductividades se unen por sus extremos para formar un circuito, y éstas se colocan en un gradiente de temperatura, se produce un flujo de electrones conocido como corriente Seebeck.



Termocupla

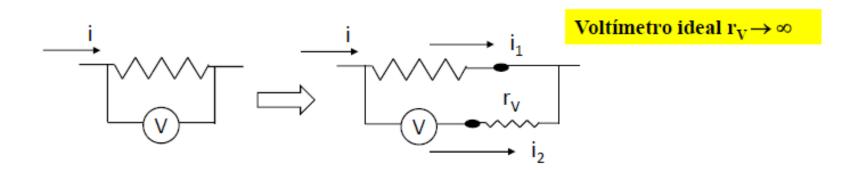
dispositivo que permite medir temperaturas

Está constituida por dos alambres metálicos diferentes que, unidos, desarrollan una diferencia de potencial eléctrica entre sus extremos libres que es aproximadamente proporcional a la diferencia de temperaturas entre las junturas 1 y 2.

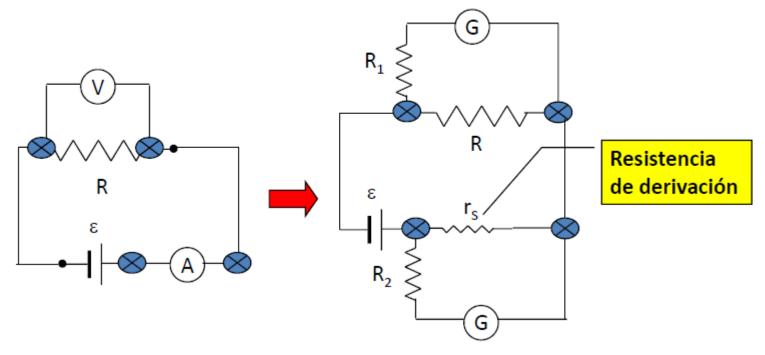


Tipos de Termocuplas

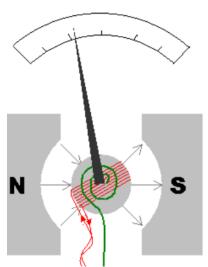
Tipo	Materiales		Rangos	
	Conductor+	Conductor -	Temp. °C	Tensión
3	Platino + 30% Rodio	Platino + 6% Rodio	600 a 1820	1,792 a 13,82 mV
C	Tungsteno + 5% Rhenio	Tungsteno + 26% Rhenio	0 a 2316	0 a 37,079 mV
E	Niquel-Cromo (Chromel)	Cobre-Níquel (Constantán)	-250 a 1000	-9,719 a 76,37 mV
J	Ніегго	Cobre-Níquel (Constantán)	-210 a 1200	-8,096 a 69,555 mV
K	Niquel-Cromo (Chromel)	Niquel Aluminio	-200 a 1372	-5,891 a 54,886 mV
L	Hierro	Cobre-Níquel (Constantán)	-200 a 900	-8,166 a 53,147 mV
N	Níquel-Cromo-Silicio (Nicrosil)	Níquel- Silicio-Magnesio (Nisil)	-200 a 1300	-3,990 a 47,514 mV
R	Platino + 13% Rodio	Platino	-20 a 1767	-0,101 a 21,089 mV
S	Platino + 10% Rodio	Platino	-20 a 1767	-0,103 a 18,682 mV
T	Cobre	Cobre-Níquel (Constantán)	-250 a 400	-6,181 a 20,873 mV
U	Cobre	Cobre-Níquel	-200 a 600	-5,693 a 34,320 mV


Amperimetros y Voltimetros

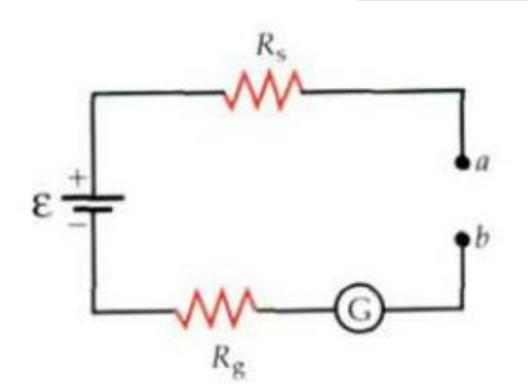
Corriente: se mide con un Amperimetro conectado en serie al elemento cuya corriente se desea medir-


Amperímetro tiene resistencia interna $r_A => modifica circuito$

Voltaje: se mide con un Voltímetro)conectado en paralelo con elemento donde se mide diferencia de potencial.



Voltímetro tiene resistencia interna rV => modifica circuito


Ejemplificación de cómo miden un Voltímetro y un Amperímetro

Galvanómetro: dispositivos en el que la corriente que circula por una espira produce una deflexión en la aguja del medidor proporcional a esa corriente (efecto magnético). Sencibilidad 10-8 A

Ohmímetro

$$R = 0 \quad \left(I = \frac{\varepsilon}{R_s + R_g}\right)$$

Galvanómetro ofrece deviación a fondo de escala

$$R \to \infty$$
 $I \to 0$

Desviación nula del galvanómetro

$$I = \frac{\varepsilon}{R + R_s + R_g}$$

I depende de R, por lo tanto la escala puede calibrarse para dar una medida directa de R.