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The aerodynamlcs of tennis balls—The topspln lob
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cvur Faculty of Mechanical Engineering, Department of Physics, Suchbatarova 4, 166 07 Prague,

Czechoslovakia

(Received 1 May 1986; accepted for publication 30 April 1987)

A general description is presented of the calculation of the ballistic trajectory of a flying spinning
ball acted on, in addition to the forces of gravity and drag, by the so-called Magnus force. By
applying the regression analysis to results of wind-tunnel measurement of the drag and lift
coefficients of a spinning ball, a calculation of the nonlinear differential equation of the hodograph
was carried out by means of the Runge-Kutta method. The theoretical results that can be used to
calculate the ballistic trajectories for any ball game were applied to one of the most difficult and
most interesting tennis strokes, i.e., to the topspin lob. Practical results obtained for various
distances are presented in a table as well as in graphical form.

LIST OF SYMBOLS

v ball flight velocity

w equatorial velocity of the spinning ball

Cp drag coefficient

o lift coefficient

R ballistic trajectory radius of curvature

m ball mass

G ball weight

g gravity acceleration

T angle between the velocity vector and ahorizontal

L. INTRODUCTION AND HISTORICAL
BACKGROUND

Ifthe Coriolis force is neglected, the shape of the ballistic
trajectory of a flying rotating ball is essentially affected by
three forces, i.e., the force of gravity G, the drag force D,
and the so-called Magnus force M, which was explained by
Magnus as early as 1853." This force always acts perpen-
dicular to the vector of the flying ball velocity and its axis of
rotation. Its magnitude and, in particular, the direction of
the ball rotation substantially affects the shape of the ball’s
trajectory in many games such as tennis, golf, ping-pong,
baseball, etc.

A considerable amount of literature dealing with the
force effects on a rotating cylinder has been published over
the years; experimental studies of rotating spheres, on the
other hand, have been available in a limited number only,
e.g., Maccoll? and Héerner® measured the force effects on a
rotating smooth sphere and Davis* those acting on golf
balls with various surfaces. A feature common to these
studies was the determination of C;, and C; , the drag and
lift coefficient characteristics of a rotating sphere.

In contrast to these studies and their quantitative results,
one finds in numerous publications only qualitative results
and an analysis of the reason of curving of a spinning ball
trajectory made on the basis of simple considerations
founded on the Bernoulli equation; see, for example, Refs.
5 and 6.

IL. EQUATION GOVERNING THE TRAJECTORY
OF FLIGHT—THEORETICAL INTRODUCTION

Consider the case of a rotating ball projected with an
initial velocity v, at an angle «, the axis of rotation of which
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plane
a initial stroke angle
s length of the ballistic trajectory
P air density
D drag force

M Magnus force
D * M * dimensionless drag and Magnus force

x,py Cartesian coordinate of the ballistic trajectory
Yo initial ball height

Re Reynolds number

n ball revolutions

is parallel to the horizontal plane. In the case of a lifted or
topspin stroke (lob), the direction of the rotation is such
that the vector of the angular velocity 2, when following
the flying ball, lies along an axis parallel to the horizontal
plane and aims from right to left. The Magnus force acts
towards the center of curvature of the ballistic trajectory
thus increasing the trajectory curving and shortening the
range compared with the trajectory of the nonrotating ball.
The calculation of the flight trajectory starts from the
equilibrium of forces into the normal (Fig. 1),

mv?/R = mg cos 7+ M. (D
Noting that 7 decreases as the arc length s increases we
have R = —ds/dr, recalling that dt=ds/v, dx
=ds cos 7, and dy = ds sin 7, one obtains after elimina-

tion of R from Eq. (1) and integration, the parametric
equation of the ballistic trajectory in the form

_ __f U CosS T T, (2)
cosT+ M*
T Vv¥sinT
— e | ————dT. 3
y=Jo gJ;cosr+M*

The time from instant of striking necessary to reach these
coordinates is obtained by the expression

=L 4)
g JacosT+M*

where M * = M /mg is dimensionless Magnus force re-
ferred to the unit weight of the ball. To be in position to
carry out the integration in Eqs. (2)—(4) one must first
determine the dependence of the ball velocity on angle 7,
i.e., write the equation of the hodograph v =v(7). One
proceeds from the equation of motion that, for the tangen-
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Fig. 1. Ballistic trajectory and forces acting on a flying and rotating ball.

tial direction at a point of the ballistic trajectory (Fig. 1),
has the form

mill: — D —mgsinT. (5
dt
Substituting for dt in Eq. (5) and some manipulation leads

to the differential equation of the hodograph in the form

1 *

dv _sint+D o, (6)
dr cosT+M* : ‘

where similarly D * = D /mg is the dimensionless drag
force referred to the unit weight of the ball. For the case
M* =0, Eq. (6) corresponds to the usually used hodo-
graph; see, e.g., Ref. 7.

A dimensional analysis, e.g., Ref. 8, in the case of a flying
ball leads to the conclusion that the dimensionless drag and
Magnus force turn out to be

D* = Cp(wd?*/8mg) pv* (7)
M* = C, (nd?*/8mg) pv?, (8)

where 4 is the ball diameter and p is the air density. The
drag and lift coefficients C, and C, for a spinning ball can
be considered C,, = f(w/v,Re), C;, = f(w/v,Re), where w
is the equatorial velocity of a flying ball and Re is the Reyn-
olds number. The effect of the Mach number is practically
negligible up to Ma < 0.3.

III. MEASUREMENT OF THE LIFT AND DRAG
COEFFICIENTS

A device for ejecting spinning balls in the aerodynamic
tunnel is shown in Fig. 2. In the experiments, balls of the
Tretorn trademark were used. These balls, manufactured
pressureless, were fastened into a special fixture, after
which coaxial holes were drilled through the ball. Into the
holes, miniature brass bearings were glued in such a way as
to enable the ball to be fixed between steel pointed centers.
In comparison with other, mostly pressurized, balls, its
properties remain unchanged.

Ball spinning was initiated through a small electric mo-
tor with a foam rubber conical follower that was pressed
against the ball surface. After releasing the pin that was
pressing the electric drive into engagement with the ball, a
trigger was synchronously released, which in turn immedi-
ately detracted, through wires, the steel centers allowing
the ball to fall freely into the air stream of the tunnel.
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Fig. 2. Device for rotating and releasing the ball.

Spinning speed of the ball was measured by an induction
sensor located closely above the ball, see Fig. 2, picking up
signals from a small ferrite magnet, glued into a hole drilled
on the ball periphery. Simultaneously, the spinning speed
was measured by a stroboscope. Since a complete agree-
ment between both values was found to exist in the whole
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Fig. 3. Measured values of the lift coefficient C, for various air stream
velocities. The resulting regression curve applies for all data.
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Fig. 4. Values of the draé and lift coefficient as a function of the w/v ratio.

Measurements were carried out in the open-type aerody-
namics tunnel of the Research Institute for Aeronautics in
Prague, which has a diameter of 1.8 m. The drag and lift
coefficients Cp, and C; can be determined using a simple
procedure described, e.g., in Ref. 4. Measurements were
made at air velocities 13.6<v<28 m s~ ' and ball revolution
800<n<3250 rpm. Measured values of the coefficients
were plotted in the form of C, =C,(w/v) and C;
= C, (w/v) relations in which the Reynolds number, in
accordance with dimensional considerations, is a param-
eter. However, results of measurements in the aerodynam-
ics tunnel for the above-mentioned range of air velocities
and revolution were so scattered, see Fig. 3 (similar scatter
was obtained for the C,, value) that a distinct dependence
upon the air velocity, and thus upon Re, could not be ob-
tained. Therefore we can conclude that, within the limits of
measurement precision, the dependence of C,, and C;
upon Re may be neglected, which greatly simplifies the
forthcoming calculation.

Therefore, in order to smooth the measured values, it
was possible to make use of a one-dimensional regression
function whose general form was chosen to be y = (a,
+ axF 4+ ax*)%, see Ref. 9. Using a nonlinear regres-
sion, employing the method of least squares, 50 curves were
obtained in which the standard deviation s(y; ) was chosen
as the criterion for a best fit. Using this procedure, the
following equations for the C,, and C; coefficients were
obtained, see Fig. 4:

- . . Cp = 0.508 + ! . ©
range of the spinning speed used in the experiments, the [22.503 4 4.196 (w/v) —>'*]
induction sensor was removed, thus ensuring a more realis-
tic flow pattern around the ball, especially in the initial L = 1 , (10)
stages of each experimental run. 2.202 + 0.981 (w/v) !
Y —————
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Fig. 5. Calculated ball trajectories for various values of @ and b with / =23.77m, y, = 0.8 m, and H = 3.7 m.
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Table I. Numerical results of the mathematical model for / = 23.77 m, initial height y, = 0.8 m, and obstacle height # = 3.7 m.

a b a n to Lo U w/v Rex 1073
0 0.873 1.672 19.35 0 0.87-0.59

0 13.885 25° 2500 0.751 1.480 23.00 0.37-0.63 1.04-0.62
3500 0.729 1.440 23.75 0.51-0.87 1.07-0.63

0 0.776 1.668 17.19 0 0.78-0.54

3 10.885 27°42" 2500 0.675 1.505 20.14 0.43-0.70 0.91-0.56
' 3500 0.661 1.474 20.59 0.59-0.96 0.93-0.57

0 0.654 1.680 15.21 0 0.69-0.47

6 7.885 32°% 2500 0.581 1.551 17.31 0.50-0.79 0.78-0.49
3500 0.572 1.531 17.61 0.69-1.09 0.80-0.50

0 0.511 1.745 13.26 0 0.60-0.38

2500 0.462 1.654 14.71 0.59-0.96 0.66-0.40

9 4.885 41°6' 3500 0.458 1.642 14.81 0.82-1.34 0.67-0.41
4500 0.457 1.636 14.86 1.05-1.71 0.67-0.41

6000 0.455 1.633 14.91 1.39-2.28 0.68-0.41

with standard deviations of s(C,) =0.086 and s(C;)
= 0.11. Equations (9) and (10) are very similar to the
course of relationships obtained by Davies* for dimple and
mesh golf balls. These relations also have their limiting
values (Cp )y = 0.796 and (C, )y, = 0.494.

IV. NUMERICAL CALCULATION

As afirst step, the differential equation of the hodograph
(6) has been solved, using the Runge-Kutta method and
the initial conditions 7 = &, v = v,. The starting value

(g/2)x%,, (1 + tan’ @)
Up = (11)
Yo+ Xmax tan a

corresponds to a velocity at which the ball would travel,
from an initial height y, and an initial projection angle , a
distance x,,,, in a vacuum. On the basis of discrete velocity
value calculated from Eq. (6), it is not difficult to deter-
mine, through numerical integration, coordinates of the
ballistic trajectory from Eqs. (2) and (3) and the corre-
sponding time necessary for traveling to that point from
Eq. (4). It is clear that using Eq. (6), respecting variable
air resistance and trajectory curvature due to the Magnus
force, the ball cannot reach the distance x,,,, . Therefore, in
subsequent calculations, the initial velocity v, is increased
by an increment Av = 1 m s~ till the required value x,_,
was exceeded. After that, velocity was diminished by one
step and a finer value Av/10 introduced into the algorithm.
The whole procedure was repeated till the prescribed x,,,,
was reached with a preset accuracy. In Table I, corre-
sponding to Fig. 5, results of the above procedure are sum-
marized as an illustration. Here, the calculations were
made for one of the most difficult and interesting tennis
strokes, i.e., for the topspin lob. If the length of the tennis
court is 23.77 m and, while playing doubles, the opposing
netman stands 2 m behind the net (see point Bin Fig. 5), it
is possible to determine from Table I, for a given distance of
the striking A player, the initial angle a and initial velocity
vo for a given spin, which for an obstacle of the height 4
(e.g., h = 3.7m) would result in a most rapid stroke falling
just upon the opposer’s baseline, point D.

In the computer program, the input values are distances
a and b, court length /, height A, revolutions of a ball #, and
the initial height y,. For these input values the program
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determines the angle e, the velocity v, the total flight time
t ... » and the important value of time necessary to reach the
point'C, t.. Moreover, Table I presents ranges of the w/v
ratio and the Reynolds number Re as a check. It is clear
that on increasing the ball spin, the time necessary to reach
the critical point C decreases steadily so that the player
must react more and more rapidly. If, e.g., a player intends
to lob the opposing netman from the baseline, b = 13.885
m, the time without rotation is z- = 0.873 s. However,
playing a lifted stroke with n = 3500 rpm, ¢ decreases to
0.729 s. This means that the opposer’s reaction must be
approximately 0.14 s more rapid. The effect of the topspin
lob becomes even more pronounced, if played from some-
where within the court, e.g., from point A’. In this case the
ball must be played under a greater angle. If, e.g.,a =9 m
and b = 4.88 m, one can see from Table I that for n = 3500
rpm we must react at the latest in 0.46 s, regardless of the
fact that the ball ascends steeply with the angle @ = 40°6 so
that it appears visually to fall well behind the baseline. This
fact, together with the need for an extraordinarily fast reac-
tion, influences in the initial stage of the ball flight, the
decision making of even experienced players. It happens
thus that the opposing player does not react properly to the
ball’s flight in spite of its reaching a lower height than in C,
at which it could be returned.

It is interesting to note that for a constant distance b, the
total flight distance being the same, all balilistic trajectories
are approximately the same. They differ insignificantly in
the vicinity of their maxima where all trajectories for rotat-
ing balls are below the ballistic curve without rotation, i.e.,
forn=0.

In Fig. 5, for a = 0, b = 13.88 m, the dashed line corre-
sponds to a ball rotating with #n = 3500 rpm. The maxi-
mum of this trajectory lies only 4.1 cm below the curve for
n =0. The difference diminishes, attaining for a=9 m
only 1.4 cm. '

For other values of /, 4, a, b, n, and y,, that might be of

" interest, a FORTRAN IV program is available and may be
obtained from the author on request.

V. COURT—EXPERIMENT

In order to obtain real values of the tennis-ball rotational
speed for a topspin lob played optimally, a high-speed cam-
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era STALEX with a maximum frequency of 3000 frames
per second was employed. In shooting the movie, Czecho-
slovak Davis Cup player and doubles specialist Pavel Slozil
played this difficult stroke repeatedly with an effort to
achieve a maximum possible spin.

After evaluating all the film material it became clear that
the highest rotation obtained was around 3500 rpm. Al-
though this is probably not the final limit of human possibi-
lities these days, it is sufficient to play a fast and effective
lob stroke. Therefore, the limiting value of n = 3500 rpm
also closes the fourth column in Table I. Only for a = 9 m,
as an illustrative example, the calculation was made for
higher spin values of » = 4500 rpm and n = 6000 rpm. It
may be seen that increasing the spin further above 3500
rpm results in accelerating the ball into point C by 0.001 s
or by 0.003 s at 6000 rpm. From both viewpoints, i.e., what
is practical and possible, it is clear that this insignificant
acceleration does not produce any appreciable time gain
for the attacking (or defending) player. On the other hand,
it can only play a significant role after contacting the play-
ground where it causes the ball to bounce off fast and high
with a higher spin requiring more skill returning the ball.
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Teaching special relativity through a computer conference

Richard C. Smith

Department of Physics, The University of West Florida, Pensacola, Florida 32514-5751

(Received 23 February 1987; accepted for publication 7 May 1987)

A recent seminar in special relativity is described, which was taught exclusively through a
computer conference, hosted on a distant mainframe computer, and asynchronously accessed by
students and instructor with microcomputer and modem. Nine participants offered more than
400 separate discussion contributions over the 13-week span of the course. Criteria for choosing
courses to be offered in this mode are suggested, and problem areas that need attention in the

conduct of subsequent courses are pointed out.

L. INTRODUCTION

In a recent article, Halloun and Hestenes' addressed the
perils we face in the physics classroom if we ignore the fact
that our students have preconceived, and often incorrect,
notions of how nature behaves. A major part of our task as
teachers is to address and correct these erroneous ideas.
The “common sense” test described in Ref. 1 shows the
extent of the problem and indicates that merely knowing
how to calculate the motion of a projectile is not the same as
knowing what it does, an important point also recently ad-
dressed by Gerhart.>

Many, perhaps most, of our physics classes depend al-
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most exclusively on calculation and symbol manipulation,
with little opportunity to discuss physics in plain language
terms, ones that are rooted in our experience.3 It seems
reasonable to test the idea that successful learning of phys-
ics requires the use of word symbols as well as mathemat-
ical symbols, and thus we offered our required “Special
Topics in Physics” course in a new mode that would re-
quire extensive text-based discussion.

The tool for this offering appeared at the same time,
namely, the computer conference, in which all contribu-
tions to a discussion are made in words or at least entered
on a typewriter keyboard. The use of a computer confer-
ence allowed us also to test the proposition that college
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