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A dipole in a dielectric: Intriguing results and shape dependence
of the distant electric field

R. L. P. G. Amaral and N. A. Lemos®
Departamento de Bica, Universidade Federal Fluminense, Av. Liloea s/n, Boa Viagem,
CEP 24210-340, NitéipRio de Janeiro, Brazil

(Received 16 May 2002; accepted 26 September 2002

The field of a point electric dipole in an infinite dielectric is obtained by placing the dipole at the
center of a spherical cavity of radilR inside the dielectric and then letting—0. The result
disagrees with the elementary answer found in textbooks. The mathematical and physical reasons
for the disagreement are discussed. The discrepancy is confirmed by the same limiting procedure
applied to a uniformly polarized sphere embedded in the dielectric. We next solve the same problem
for a polarized spheroid immersed in an infinite dielectric and find that the asymptotic potential
shows an unexpected shape dependence, even after taking the limit of an arbitrarily small spheroid.
By considering both oblate and prolate spheroids and taking appropriate limits, we recover either the
elementary textbook answer or the previous result found for the polarized sphez®o3@merican
Association of Physics Teachers.

[DOI: 10.1119/1.1522697

[. INTRODUCTION distanced. Letting d—0 with qd= pg gives the pure dipole.

Historically, electromagnetism, and particularly eIectro—Because in a linear dielectric medium Gauss'’ I@D-da
statics, has been a rich source of beautiful mathematical 9 establishes that each of the chargeand —q will be

physics problems, most of which are quite standard by now>creened b.y polarization chargesdb=qeo/e, the dipole
Yet, from time to time, a closer look at certain simple andMoment will be screened by the same factor, so that the

seemingly exhausted problems might surprise even the exp@ctual(effective dipole moment is

rienced practitioner. We start by discussing the elementary €o

problem of determining the electrostatic field produced by a p=py—. (1)
pure(point) dipole embedded in the bulk of an infinite linear €

dielectric medium. This problem is solved by two apparentlygEquation(1) is the answer found in standard textbodkse
equivalent methods. The first makes use of an elementangef. 1 for example In other words, for a point dipole par-
argument found in textbooks and the other consists of puttingjle| to thez axis and located at the origin, the electrostatic

the dipole at the center of a spherical hole in the dielectrigyotential inside the infinite linear dielectric medium in
and then letting the radius of the hole tend to zero. Thespherical coordinates (6, ¢) is

discrepancy between the results might surprise the reader as

much as it surprised the authors. The discrepancy is corrobo- p cosé

rated by the same limiting procedure applied to a uniformly ~ ®(r)= > 2

polarized sphere embedded in the dielectric.
Next we solve for the electrostatic field of a uniformly \yith p given by Eq.(1).

ir)teresting exercise in mathematical physics invc_)Iving ir_1 adipole p, at the center of an empty spherical hole of radius
simple way Legendre functions of the second kind, WhIChcut out of the dielectric medium and then lettiRg- 0. It is

are seldom used in the standard electromagnetism textboo ; : ;
> ; : . Igp ropriate to make use of the general solution to Laplace’s
We find that th? asymptotic potgnt_lal exhibits a shape depergqﬁati%n in spherical coordina?es for problems Witr? azi-
dence. By taking appropriate limits, we recover either the

. muthal symmetry. It is easy to see that the boundary condi-
elementary textbook answer or the previous result found fogons can be satisfied by taking onlv the 1 term of the
the polarized sphere. The dependence of the electrostatic po-. d oy g only .
tential on the shape of the spheroid, even after taking th&zimuthally symmetric general solution, so the electrostatic
limit in which the spheroid shrinks away keeping a finite potential inside the hole is

dipole moment, is unexpected and to a certain extent nonin-

tuitive. This physical effect appears to have been overlooked &®)(r)=Ar cos 9+
by standard textbooks. Amey r

47T€0 r

po cosé
2

(0<r<R) (3a)

and the potential outside is

[I. FIELD OF A DIPOLE IN A DIELECTRIC ,
p’ cosé

4dmey 2

O (r)= (r>R). (3b)

The problem of obtaining the field produced by a dipole in
a dielectric medium is one of those elementary problems that
is presentsolved or proposedn a variety of textbooks. The Note that inside the hole the singular term corresponds to
well-known solution is trivial. The physical dipole consists the pure dipole singularity with dipole momepg, because
of two opposite point chargesj(and —q) separated by the the dipole is in vacuum. Outside, only the term that de-

392 Am. J. Phys.71 (4), April 2003 http://ojps.aip.org/ajp/ © 2003 American Association of Physics Teachers 392

Downloaded 23 Sep 2012 to 136.159.235.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



[Il. UNIFORMLY POLARIZED SPHERE IN A
DIELECTRIC

creases with is present, with the factq’ to be determined.
By requiring the continuity of the scalar potentiafuivalent

to the continuity of the tangential component of the electric
field) and of the radial component of the electric displace-
ment vector DM=— ¢, VO™ andD@=— eV d(?)) at the
boundaryr =R, we obtain

To check the previous result in EQ) and allow for a
generalization in Sec. 1V, let us consider a uniformly polar-
ized spherdelectrej of radiusR, with polarizationP along

the z axis, P=Pgk, surrounded by an infinite dielectric

ad® P ) . : . .
— € - , (4)  whose dielectric constant is The potential has no singular-
A P a | g ity inside the sphere, so we have
and ®M(r)=Br cosf (0<r<R) (10a
DRy =DdA(R). (5)  for the potential inside the sphere, while the potential outside
Application of the boundary conditions in Eqd) and(5) S
leads to 2 p’ (10
d)(r)= r>R). 10
2p0 2pr ( ) 47T€0 r2 ( )
- = 1 6 .
0 47eyR3 ‘ 47eyR3 © We now notice thab!) = — ¢,V ®®+ P and apply the same
and boundary conditions as before to obtain
2ep’
0 ’
p p =—€B+P (12
_+AR= 5 (7) dmegR® 0 °
47760R 47T€0R
o and
whose solution is
p/
2(en— =B, 12
= (€o=€) _ Po (8) 4enR3 (12
2et+ €y 47egRE _
which are solved by
and
i (13
3e = et e
p'= 51 —Po. ©) 2et &
0 and
According to Eqs(8) and(9), the electrostatic potential out- Arre
side the hole is that of a point dipole in vacuum with effec- p'= 0 R3P, (14)
tive dipole momenp’ given by Eq.(9). In the limit R—0, 2e+ €

the dipole potential everywhere except at the origin is givenThe resulting electrostatic potential inside the polarized
by Eq.(3b) with p” determined by Eq(9). Surprisingly, this  sphere is
effective dipole moment disagrees with the one given in Eq.

; P
(1) by means of the previous elementary argument. dD(r)= © cosf (0<r<R 15
The reason for the discrepancy appears to be the lack of " 2e+ € ( ) (159
commutativity of two successive limits. The reslj corre- h ial o
sponds to putting the two opposite charges outside the holeénd the potential outside is
in the dielectric, letting the radius of the hole tend to zero 5 R3P, cosé@
first, and then making the distance between the charges arbi- ®?(r)= et ey 12 (r>R). (15b

trarily small, thus creating a dipole at the origin. To obtain
result(9), we first let the distance between the charges tengf we let R—0 and P,— in such a way thatp,

to zero, creating a point dipole at the center of the hole, and__(4/3)7TR3PO remains fixed, we would expect to recover
only later do we make the radius of the hole arbitrarily small.the point dipolep, at the origin embedded in the infinite

A physical explanation for the discrepancy is that in the firStdielectric. In such a limit, the potential everywhere except at
case, but not in the second case, the charges are alwawe origin becomes '

screened by the dielectric.

We might argue that the dipole moment associated with
the polarization charges on the surface of the hole added to
po leads to a total dipole moment given by Ef), which is
in fact vindicated by an explicit calculation. This argument, This result coincides with th&®—0 limit of the previous
however, misses the point. The surprise comes from the fagroblem of the point dipole at the center of an empty sphere
that, if only thefree dipole momentp, is considered, its inside the dielectric.
reduction by the dielectric constant factor does not account Here, again, the dipole moment of the polarization charges
for the screening effect due to the polarization of the me-on the spherical surface of the dielectric leads to the total
dium. This behavior contrasts sharply with that of a pointdipole moment(9). Thus, the field inside the dielectric is
charge at the center of the hole, whose field in the interior obbtained from the vacuum field by reducing the free dipole

3eg 1 pocosé

@)(r)=
N 2et+ €y 4mmeg 2

(r>0). (16)

r

the dielectric is obtained by simply replacing thiee charge
g by geg/ e in the vacuum field.

393 Am. J. Phys., Vol. 71, No. 4, April 2003

moment by a factor that differs from the screening factor for
a point charge.
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V. UNIFORMLY POLARIZED SPHEROID IN A
DIELECTRIC

To put the results of Sec. Il in a broader context, which
will make possible a further investigation of the origin of the
discrepancy encountered above, we will examine a third “i
terpolating” problem. Consider a uniformly polarized hole
(electre} in the dielectric medium with the shape of a spher-

oid (an ellipsoid of revolutioh
A. The oblate case

The oblate spheroidal coordinates are definedseg Ref.

2 for example
Xx=a coshu sinv cose,
y=a coshu sinv sin ¢, (17)

z=a sinh u cosv,

with =0, O<v <, 0< <27, anda a positive real num-

ber. The surface of the spheroid is definedby wq, while

its interior is determined by <pug. It is easy to see that th

n_

DO(E D =P1(E[AP(i0)+BQy(i¢)] (§<§o),(2

33
DOE,O=PHICPLi)+DQiD]  (£>{o),
(23b
where
Pué)=¢& Quiy=¢cot -1 (24)
It is not difficult to show that for large,
) 1
Quid)—— = (25)

3%
Therefore, the correct asymptotic behaviodofequires that
C=0. As in the spherical coordinates case, it is necessary to
take B=0 to avoid unphysical singularities. Indeed, the
component of the electric field associated with the term

P1(£)Q4(i¢) is proportional to hy *d[P1(£)Qq(i¢)1/é
=a Y (1- )Y 2+ 2~V ¢ cot 1z—1), which is infinite

e at {=¢=0, that is, at the circumference=a on the xy

surface of the spheroid is given in cartesian coordinates byPlane. Thus, we try to satisfy the boundary conditions with

2 2 2

Xs ys oz

X2 X272
where X=a coshug, and Z=a sinh u,, so thatX>Z. The

ellipsoid is oblate, that is, flattened along thdirection.
In terms of the new variables

1, (18

E=cosv (—1=s¢=<1),

{=sinhu (0<{<o), 19
we can write

X=p COS¢, Y=psSing, z=a&{, (20
with

p=al(1-&)(1+ )] (21

The surface of the spheroid is now given hy={,.

Laplace’s equation for the potential is separable in these
coordinate,and its solution with rotational symmetry about
the z axis, which is acceptable in the present physical cir-

cumstances, is

<D<1><§,§>=§0 PUOTAP(IO+BQI]  (£<lo)
(229

inside the spheroid, and

‘P(Z)(E,é):lgo P(OICPI(IO+DQII]  (£>4o)
(22b

outside the spheroid, whei® is thelth Legendre polyno-
mial andQ, is the Legendre function of the second kind of
orderl. The absence d,(¢) is necessary to guarantee the

regularity of® on thez axis (é=1).
An inspection of Eq.(17) shows that asymptotically

(the imaginary unit has been absorbed into the coeffidi¢nt
OW(EH=AEL  (£<{o) (26
and
®A(£,0)=DE&¢ cot T{—1)  ({>{o)- (26b)

The continuity of the potential at the surface of the spher-
oid yields

Alo=D(Zocot 1o~ 1). (27)

The continuity of the normal component Bfon the surface
of the spheroid demands that

1 90M 1 90®
Ohg o +P-e{ _eh_go"—g ) (28)
% fo
with
1/2
£+

Because the unit outward normal vector to the surface of the
spheroid is

~ orlgl 1 or

plays the role of a radial coordinate. More precisely, for large

u, we haveé~cos6 and {~r/a with r, 8 spherical coordi-

nates. This observation strongly suggests that the terms with elo '

=1 alone will suffice to satisfy the boundary conditions,

and accordingly we take

394 Am. J. Phys., Vol. 71, No. 4, April 2003

e§=|&r/—(9§| = h_g i (30)
it follows that

P-g,= Pok-g,= PoilZ- r Poa_g' (31)

h, ¢ h,

The substitution of Eqg26) and(31) into Eq. (28) leads to

— €A+ Poa=—eD| cot - o 2) . (32)

1+¢5

The solution forA andD is

Al (cot 1¢o—1/gg)aPy 33

1 €0
(eg—e)cot Lo+ 1+ 02 "%
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aP n ntl
D= o (34) Qu(n)=5In—— -1, (44)
B 1 €lo € 7
(eo—e)cot Lo+ 1+ 2 % whose asymptotic behavior for largeis
The volume of the spheroid is 1
one i Qu(n)— . (45)
V=3m(a coshug)?a sinh uo=3ma3(1+ ¢85, (35 37
so that the dipole moment of the spheroid is The application of the boundary conditions at the surface
i 3 5 of the uniformly polarized prolate spheroid yields
Po=3ma’(1+5) o Po- (36)
1 7+1 1
For large{, we haveé~cos6d and {~r/a, so that, with 2 n77 -1 77— aPq
the use of Egs(25) and (36), we find that the asymptotic F= 0 0 , (46)
behavior of the potential is €o— € Ir‘n0+ 1 €% €0
€ 2 -1 7e—1 Mo
DO £,¢)— — 5
(€—€g)o(1+{p)cot ™ {o+eot(eg—€) (G G aPg a7
cos 6 €—€ nmotl €my €
Po (37) 5 In _1+ RPN
47760 r2 7]0 7]0 1 7]0

This result is quite unexpected! Our intuition leads us to The volume of the prolate spheroid is

believe that seen from far away, it is impossible to tell a
uniformly polarized sphere from a uniformly polarized ellip- o .
soid. The shape independence of the asymptotic potenti@nd its dipole moment is

prevails qnly for t_he vacuumeE eg). For a dlelectrlq, the . Po=4mad( 72— 1) 70 Po.
asymptotic potential depends on the shape of the dipole dis-

V={n(a sinh ue)%a coshuoe=4ma(n3—1) 9o, (48)

(49

tribution near the origin.

As for the oblate case, we have for large é~cosé and
n~rla, so that the asymptotic behavior of the potential is

€
(pr) 0
B. The prolate case PPU(E, ) — RN p— ( W
—1)In +ept(e—€
The analysis of the prolate case runs along similar lines. 2 ot -1 ° o170
The prolate spheroidal coordinates are defined by
. ] po cosé
x=a sinh u sinv cose, drey 12 (50
y=a sinh u sinv sin ¢, (38

z=a coshu cosv.

The surface of the spheroid is defined by nq, while its
interior is determined by.<<uy. The surface of the spheroid
is again given in cartesian coordinates by Etg) with X
=a sinhug andZ=a coshug, so thatZz>X and the spher-
oid is elongated in the direction.

In terms of the new variables

é=cosv (—1=s¢é=<1)

n=coshp (lspsw) 39
we can write

X=p COS¢@, Yy=psSine, z=aféy, (40)
with

p=al(1-&)(n*~1)]" (41

The surface of the spheroid is now given by 74, and the
solution to Laplace’s equation that suits our problem is

PN(£,7)=FP1(&P1(n)  (9n<no) (42
and

PA(£,7)=GP1(£)Qi(n) (7> n0). (43)
Here
395 Am. J. Phys., Vol. 71, No. 4, April 2003

Once again the asymptotic potential exhibits a surprising
shape dependence that is absent only in the case of the
vacuum. For a dielectric the asymptotic potential allows us
to tell the difference between a uniform dipole density dis-
tributed within a sphere, an oblate spheroid, or a prolate
spheroid. If a hole in the dielectric is filled with a uniform
charge density, no such shape dependence is observed. The
total induced charge depends only on the internal free charge
and on the dielectric constant.

Note also the striking result that the electric field is uni-
form inside the spheroid because the potential is of the form
®M=Azin both cases, as Eq&6a and(42) show.

V. LIMITING CASES AND CONCLUSION

Let us define the screening facteras the coefficient that
multiplies the vacuum asymptotic dipole field to give the
asymptotic dipole field in the presence of the dielectric me-
dium.

From Eq.(50) it follows immediately that
-1

€Ep— € 2
+ €9t (€—€9) Mg

€€ 2 not1
2 7]0( 7]0 1)|n7]0_ 1

a=€p
(51)

The spherical limit is reached by letting,= coshug—
anda—0 in such a way thata coshug=R remains fixed.
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Then we obtainX=Z=R in Eqg. (18) and the spheroid de- measure of the total dipole moment in the presence of the
generates into a sphere. If we take into account that for largdielectric relative to the vacuum dipole momewy. Thus,

70, the dipole moment of the charges induced on the surface of
the hole depends not only on the free dipole monmgnand

m’?O“L 1 _ i n i L. (52) the dielectric constant, but also on the shape of the hole. That

70-1 7m0 353 ' the shape dependence persists in the infinitely small hole

limit seems to be related to the singularity of the dipole field,

it is easy to show that which is stronger than that of the monopole field. For a
3¢, shrinking finite charge distributioimonopole, Gauss’ law
lim a= et e (53  forbids this effect. The reader might want to generalize the
0

dipole result for higher multipole moments.

It is suspected that such a shape dependence would mani-
est itself in the dynamical case, that is, in the radiation from
a point dipole embedded in an infinite dielectric. Such a phe-
nomenon might be of relevance in condensed matter physics.
For instance, it might give rise to classical effects in the
theory of quantum dots.

79—

Thus our previous result for the uniformly polarized sphere
is recovered. f

Let us now examine the line dipole limit, reached by let-
ting no—1 or, equivalently,uy,—0. In this limit we have
X=0 andZ=a, so that the ellipsoid18) reduces to a line
segment (a rod along the z axis. If we recall that
lim,_,ox In x=0, we can readily show that

. €0
lim = (549 ACKNOWLEDGMENTS
70—
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