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A dipole in a dielectric: Intriguing results and shape dependence
of the distant electric field

R. L. P. G. Amaral and N. A. Lemosa)

Departamento de Fı´sica, Universidade Federal Fluminense, Av. Litoraˆnea s/n, Boa Viagem,
CEP 24210-340, Nitero´i, Rio de Janeiro, Brazil

~Received 16 May 2002; accepted 26 September 2002!

The field of a point electric dipole in an infinite dielectric is obtained by placing the dipole at the
center of a spherical cavity of radiusR inside the dielectric and then lettingR→0. The result
disagrees with the elementary answer found in textbooks. The mathematical and physical reasons
for the disagreement are discussed. The discrepancy is confirmed by the same limiting procedure
applied to a uniformly polarized sphere embedded in the dielectric. We next solve the same problem
for a polarized spheroid immersed in an infinite dielectric and find that the asymptotic potential
shows an unexpected shape dependence, even after taking the limit of an arbitrarily small spheroid.
By considering both oblate and prolate spheroids and taking appropriate limits, we recover either the
elementary textbook answer or the previous result found for the polarized sphere. ©2003 American

Association of Physics Teachers.
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I. INTRODUCTION

Historically, electromagnetism, and particularly electr
statics, has been a rich source of beautiful mathema
physics problems, most of which are quite standard by n
Yet, from time to time, a closer look at certain simple a
seemingly exhausted problems might surprise even the e
rienced practitioner. We start by discussing the elemen
problem of determining the electrostatic field produced b
pure~point! dipole embedded in the bulk of an infinite line
dielectric medium. This problem is solved by two apparen
equivalent methods. The first makes use of an elemen
argument found in textbooks and the other consists of put
the dipole at the center of a spherical hole in the dielec
and then letting the radius of the hole tend to zero. T
discrepancy between the results might surprise the read
much as it surprised the authors. The discrepancy is corro
rated by the same limiting procedure applied to a uniform
polarized sphere embedded in the dielectric.

Next we solve for the electrostatic field of a uniform
polarized spheroid in an infinite dielectric. This solution is
interesting exercise in mathematical physics involving in
simple way Legendre functions of the second kind, wh
are seldom used in the standard electromagnetism textbo
We find that the asymptotic potential exhibits a shape dep
dence. By taking appropriate limits, we recover either
elementary textbook answer or the previous result found
the polarized sphere. The dependence of the electrostatic
tential on the shape of the spheroid, even after taking
limit in which the spheroid shrinks away keeping a fin
dipole moment, is unexpected and to a certain extent no
tuitive. This physical effect appears to have been overloo
by standard textbooks.

II. FIELD OF A DIPOLE IN A DIELECTRIC

The problem of obtaining the field produced by a dipole
a dielectric medium is one of those elementary problems
is present~solved or proposed! in a variety of textbooks. The
well-known solution is trivial. The physical dipole consis
of two opposite point charges (q and2q) separated by the
392 Am. J. Phys.71 ~4!, April 2003 http://ojps.aip.org/aj
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distanced. Letting d→0 with qd5p0 gives the pure dipole.
Because in a linear dielectric medium Gauss’ lawrD"da
5q establishes that each of the chargesq and 2q will be
screened by polarization charges toq85qe0 /e, the dipole
moment will be screened by the same factor, so that
actual~effective! dipole moment is

p5p0

e0

e
. ~1!

Equation~1! is the answer found in standard textbooks~see
Ref. 1 for example!. In other words, for a point dipole par
allel to thez axis and located at the origin, the electrosta
potential inside the infinite linear dielectric medium
spherical coordinates (r ,u,w) is

F~r !5
p

4pe0

cosu

r 2
, ~2!

with p given by Eq.~1!.
Now let us solve the ‘‘same’’ problem by putting the pu

dipolep0 at the center of an empty spherical hole of radiusR
cut out of the dielectric medium and then lettingR→0. It is
appropriate to make use of the general solution to Lapla
equation in spherical coordinates for problems with a
muthal symmetry. It is easy to see that the boundary con
tions can be satisfied by taking only thel 51 term of the
azimuthally symmetric general solution, so the electrosta
potential inside the hole is

F (1)~r !5Ar cosu1
p0

4pe0

cosu

r 2
~0,r ,R! ~3a!

and the potential outside is

F (2)~r !5
p8

4pe0

cosu

r 2
~r .R!. ~3b!

Note that inside the hole the singular term correspond
the pure dipole singularity with dipole momentp0 , because
the dipole is in vacuum. Outside, only the term that d
392p/ © 2003 American Association of Physics Teachers
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creases withr is present, with the factorp8 to be determined.
By requiring the continuity of the scalar potential~equivalent
to the continuity of the tangential component of the elec
field! and of the radial component of the electric displac
ment vector (D(1)52e0“F (1) andD(2)52e“F (2)) at the
boundaryr 5R, we obtain

2e0

]F (1)

]r U
r 5R

52e
]F (2)

]r U
r 5R

, ~4!

and

F (1)~R!5F (2)~R!. ~5!

Application of the boundary conditions in Eqs.~4! and~5!
leads to

e0F 2p0

4pe0R3
2AG5e

2p8

4pe0R3
, ~6!

and

p0

4pe0R2
1AR5

p8

4pe0R2
, ~7!

whose solution is

A5
2~e02e!

2e1e0

p0

4pe0R3
~8!

and

p85
3e0

2e1e0
p0 . ~9!

According to Eqs.~8! and~9!, the electrostatic potential out
side the hole is that of a point dipole in vacuum with effe
tive dipole momentp8 given by Eq.~9!. In the limit R→0,
the dipole potential everywhere except at the origin is giv
by Eq.~3b! with p8 determined by Eq.~9!. Surprisingly, this
effective dipole moment disagrees with the one given in
~1! by means of the previous elementary argument.

The reason for the discrepancy appears to be the lac
commutativity of two successive limits. The result~1! corre-
sponds to putting the two opposite charges outside the
in the dielectric, letting the radius of the hole tend to ze
first, and then making the distance between the charges
trarily small, thus creating a dipole at the origin. To obta
result ~9!, we first let the distance between the charges t
to zero, creating a point dipole at the center of the hole,
only later do we make the radius of the hole arbitrarily sm
A physical explanation for the discrepancy is that in the fi
case, but not in the second case, the charges are al
screened by the dielectric.

We might argue that the dipole moment associated w
the polarization charges on the surface of the hole adde
p0 leads to a total dipole moment given by Eq.~9!, which is
in fact vindicated by an explicit calculation. This argume
however, misses the point. The surprise comes from the
that, if only the free dipole momentp0 is considered, its
reduction by the dielectric constant factor does not acco
for the screening effect due to the polarization of the m
dium. This behavior contrasts sharply with that of a po
charge at the center of the hole, whose field in the interio
the dielectric is obtained by simply replacing thefreecharge
q by qe0 /e in the vacuum field.
393 Am. J. Phys., Vol. 71, No. 4, April 2003

Downloaded 23 Sep 2012 to 136.159.235.223. Redistribution subject to AAPT
c
-

-

n

.

of

le

bi-

d
d

l.
t
ys

h
to

,
ct

nt
-
t
f

III. UNIFORMLY POLARIZED SPHERE IN A
DIELECTRIC

To check the previous result in Eq.~9! and allow for a
generalization in Sec. IV, let us consider a uniformly pola
ized sphere~electret! of radiusR, with polarizationP along

the z axis, P5P0k̂, surrounded by an infinite dielectri
whose dielectric constant ise. The potential has no singular
ity inside the sphere, so we have

F (1)~r !5Br cosu ~0,r ,R! ~10a!

for the potential inside the sphere, while the potential outs
is

F (2)~r !5
p8

4pe0

cosu

r 2
~r .R!. ~10b!

We now notice thatD(1)52e0“F (1)1P and apply the same
boundary conditions as before to obtain

2e p8

4pe0R3
52e0B1P0 ~11!

and

p8

4pe0R3
5B, ~12!

which are solved by

B5
P0

2e1e0
, ~13!

and

p85
4pe0

2e1e0
R3P0 . ~14!

The resulting electrostatic potential inside the polariz
sphere is

F (1)~r !5
P0

2e1e0
r cosu ~0,r ,R! ~15a!

and the potential outside is

F (2)~r !5
R3P0

2e1e0

cosu

r 2
~r .R!. ~15b!

If we let R→0 and P0→` in such a way thatp0

5(4/3)pR3P0 remains fixed, we would expect to recov
the point dipolep0 at the origin embedded in the infinit
dielectric. In such a limit, the potential everywhere except
the origin becomes

F (2)~r !5
3e0

2e1e0

1

4pe0

p0cosu

r 2
~r .0!. ~16!

This result coincides with theR→0 limit of the previous
problem of the point dipole at the center of an empty sph
inside the dielectric.

Here, again, the dipole moment of the polarization char
on the spherical surface of the dielectric leads to the to
dipole moment~9!. Thus, the field inside the dielectric i
obtained from the vacuum field by reducing the free dip
moment by a factor that differs from the screening factor
a point charge.
393R. L. P. G. Amaral and N. A. Lemos
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IV. UNIFORMLY POLARIZED SPHEROID IN A
DIELECTRIC

To put the results of Sec. III in a broader context, whi
will make possible a further investigation of the origin of th
discrepancy encountered above, we will examine a third ‘
terpolating’’ problem. Consider a uniformly polarized ho
~electret! in the dielectric medium with the shape of a sph
oid ~an ellipsoid of revolution!.

A. The oblate case

The oblate spheroidal coordinates are defined by~see Ref.
2 for example!

x5a coshm sin v cosw,

y5a coshm sin v sin w, ~17!

z5a sinh m cosv,

with m>0, 0<v<p, 0<w<2p, anda a positive real num-
ber. The surface of the spheroid is defined bym5m0 , while
its interior is determined bym,m0 . It is easy to see that th
surface of the spheroid is given in cartesian coordinates

x2

X2
1

y2

X2
1

z2

Z2
51, ~18!

whereX5a coshm0 and Z5a sinhm0, so thatX.Z. The
ellipsoid is oblate, that is, flattened along thez direction.

In terms of the new variables

j5cosv ~21<j<1!,
~19!z5sinh m ~0<z,`!,

we can write

x5r cosw, y5r sin w, z5ajz, ~20!

with

r5a@~12j2!~11z2!#1/2. ~21!

The surface of the spheroid is now given byz5z0 .
Laplace’s equation for the potential is separable in th
coordinates,2 and its solution with rotational symmetry abo
the z axis, which is acceptable in the present physical
cumstances, is

F (1)~j,z!5(
l 50

`

Pl~j!@Al Pl~ i z!1BlQl~ i z!# ~z,z0!

~22a!

inside the spheroid, and

F (2)~j,z!5(
l 50

`

Pl~j!@Cl Pl~ i z!1DlQl~ i z!# ~z.z0!

~22b!

outside the spheroid, wherePl is the l th Legendre polyno-
mial andQl is the Legendre function of the second kind
order l . The absence ofQl(j) is necessary to guarantee th
regularity ofF on thez axis (j51).

An inspection of Eq.~17! shows that asymptoticallyz
plays the role of a radial coordinate. More precisely, for la
m, we havej'cosu andz'r /a with r ,u spherical coordi-
nates. This observation strongly suggests that the terms
l 51 alone will suffice to satisfy the boundary condition
and accordingly we take
394 Am. J. Phys., Vol. 71, No. 4, April 2003
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F (1)~j,z!5P1~j!@AP1~ i z!1BQ1~ i z!# ~z,z0!,
~23a!

F (2)~j,z!5P1~j!@CP1~ i z!1DQ1~ i z!# ~z.z0!,
~23b!

where

P1~j!5j, Q1~ i z!5z cot21 z21. ~24!

It is not difficult to show that for largez,

Q1~ i z!→2
1

3z2
. ~25!

Therefore, the correct asymptotic behavior ofF requires that
C50. As in the spherical coordinates case, it is necessar
take B50 to avoid unphysical singularities. Indeed, thej
component of the electric field associated with the te
P1(j)Q1( i z) is proportional to hj

21]@P1(j)Q1( i z)#/]j
5a21(12j2)1/2(j21z2)21/2(z cot21z21), which is infinite
at j5z50, that is, at the circumferencer5a on the xy
plane. Thus, we try to satisfy the boundary conditions w
~the imaginary unit has been absorbed into the coefficientA)

F (1)~j,z!5Ajz ~z,z0! ~26a!

and

F (2)~j,z!5Dj~z cot21z21! ~z.z0!. ~26b!

The continuity of the potential at the surface of the sph
oid yields

Az05D~z0cot21z021!. ~27!

The continuity of the normal component ofD on the surface
of the spheroid demands that

2e0

1

hz

]F (1)

]z U
z0

1P•êzU
z0

52e
1

hz

]F (2)

]z U
z0

, ~28!

with

hz5a S j21z2

11z2 D 1/2

. ~29!

Because the unit outward normal vector to the surface of
spheroid is

êz5
]r /]z

u]r /]zu
5

1

hz

]r

]z
, ~30!

it follows that

P"êz5P0k̂"êz5P0

1

hz
k̂•

]r

]z
5P0

aj

hz
. ~31!

The substitution of Eqs.~26! and ~31! into Eq. ~28! leads to

2e0A1P0a52eDS cot21z02
z0

11z0
2D . ~32!

The solution forA andD is

A5
~cot21z021/z0!aP0

~e02e!cot21z01
ez0

11z0
2

2
e0

z0

, ~33!
394R. L. P. G. Amaral and N. A. Lemos
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D5
aP0

~e02e!cot21z01
ez0

11z0
2

2
e0

z0

. ~34!

The volume of the spheroid is

V5 4
3p~a coshm0!2a sinh m05 4

3pa3~11z0
2!z0 , ~35!

so that the dipole moment of the spheroid is

p05 4
3pa3~11z0

2!z0 P0 . ~36!

For largez, we havej'cosu and z'r /a, so that, with
the use of Eqs.~25! and ~36!, we find that the asymptotic
behavior of the potential is

F (ob)~j,z!→ e0

~e2e0!z0~11z0
2!cot21 z01e01~e02e!z0

2

3
p0

4pe0

cosu

r 2
. ~37!

This result is quite unexpected! Our intuition leads us
believe that seen from far away, it is impossible to tel
uniformly polarized sphere from a uniformly polarized elli
soid. The shape independence of the asymptotic pote
prevails only for the vacuum (e5e0). For a dielectric, the
asymptotic potential depends on the shape of the dipole
tribution near the origin.

B. The prolate case

The analysis of the prolate case runs along similar lin
The prolate spheroidal coordinates are defined by2

x5a sinh m sin v cosw,

y5a sinh m sin v sin w, ~38!

z5a coshm cosv.

The surface of the spheroid is defined bym5m0 , while its
interior is determined bym,m0 . The surface of the spheroi
is again given in cartesian coordinates by Eq.~18! with X
5a sinhm0 andZ5a coshm0, so thatZ.X and the spher-
oid is elongated in thez direction.

In terms of the new variables

j5cosv ~21<j<1!

~39!h5coshm ~1<h<`!

we can write

x5r cosw, y5r sin w, z5ajh, ~40!

with

r5a@~12j2!~h221!#1/2. ~41!

The surface of the spheroid is now given byh5h0 , and the
solution to Laplace’s equation that suits our problem is

F (1)~j,h!5FP1~j!P1~h! ~h,h0! ~42!

and

F (2)~j,h!5GP1~j!Q1~h! ~h.h0!. ~43!

Here
395 Am. J. Phys., Vol. 71, No. 4, April 2003
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Q1~h!5
h

2
ln

h11

h21
21, ~44!

whose asymptotic behavior for largeh is

Q1~h!→ 1

3h2
. ~45!

The application of the boundary conditions at the surfa
of the uniformly polarized prolate spheroid yields

F5

S 1

2
ln

h011

h021
2

1

h0
DaP0

e02e

2
ln

h011

h021
1

eh0

h0
221

2
e0

h0

, ~46!

G5
aP0

e02e

2
ln

h011

h021
1

eh0

h0
221

2
e0

h0

. ~47!

The volume of the prolate spheroid is

V5 4
3p~a sinh m0!2a coshm05 4

3pa3~h0
221!h0 , ~48!

and its dipole moment is

p05 4
3pa3~h0

221!h0 P0 . ~49!

As for the oblate case, we have for largeh, j'cosu and
h'r /a, so that the asymptotic behavior of the potential i

F (pr)~j,z!→ e0

e02e

2
h0~h0

221!ln
h011

h021
1e01~e2e0!h0

2

3
p0

4pe0

cosu

r 2
. ~50!

Once again the asymptotic potential exhibits a surpris
shape dependence that is absent only in the case of
vacuum. For a dielectric the asymptotic potential allows
to tell the difference between a uniform dipole density d
tributed within a sphere, an oblate spheroid, or a prol
spheroid. If a hole in the dielectric is filled with a uniform
charge density, no such shape dependence is observed
total induced charge depends only on the internal free cha
and on the dielectric constant.

Note also the striking result that the electric field is un
form inside the spheroid because the potential is of the fo
F (1)5Az in both cases, as Eqs.~26a! and ~42! show.

V. LIMITING CASES AND CONCLUSION

Let us define the screening factora as the coefficient tha
multiplies the vacuum asymptotic dipole field to give th
asymptotic dipole field in the presence of the dielectric m
dium.

From Eq.~50! it follows immediately that

a5e0 Fe02e

2
h0~h0

221!ln
h011

h021
1e01~e2e0!h0

2G21

.

~51!

The spherical limit is reached by lettingh0[coshm0→`
and a→0 in such a way thata coshm05R remains fixed.
395R. L. P. G. Amaral and N. A. Lemos
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Then we obtainX5Z5R in Eq. ~18! and the spheroid de
generates into a sphere. If we take into account that for la
h0 ,

ln
h011

h021
5

2

h0
1

2

3h0
3

1•••, ~52!

it is easy to show that

lim
h0→`

a5
3e0

2e1e0
. ~53!

Thus our previous result for the uniformly polarized sphe
is recovered.

Let us now examine the line dipole limit, reached by le
ting h0→1 or, equivalently,m0→0. In this limit we have
X50 andZ5a, so that the ellipsoid~18! reduces to a line
segment ~a rod! along the z axis. If we recall that
limx→0x ln x50, we can readily show that

lim
h0→1

a5
e0

e
, ~54!

and the standard answer~1! is regained.
For the oblate spheroid we can also consider two limit

cases with the help of Eq.~37!. If we let z0→` and a→0
with az05R, the spherical limit is reached anda
→3e0 /(2e1e0), as it should. Ifz0→0, the spheroid be-
comes a ‘‘pancake’’ describing a dipole layer, anda→1.
This result appears to be of some interest, inasmuch as
presence of the dielectric does not change the vacuum fi

We believe that further discussion of the physical groun
for the discrepancies is necessary. The screening factora is a
396 Am. J. Phys., Vol. 71, No. 4, April 2003
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measure of the total dipole moment in the presence of
dielectric relative to the vacuum dipole momentp0 . Thus,
the dipole moment of the charges induced on the surfac
the hole depends not only on the free dipole momentp0 and
the dielectric constant, but also on the shape of the hole. T
the shape dependence persists in the infinitely small h
limit seems to be related to the singularity of the dipole fie
which is stronger than that of the monopole field. For
shrinking finite charge distribution~monopole!, Gauss’ law
forbids this effect. The reader might want to generalize
dipole result for higher multipole moments.

It is suspected that such a shape dependence would m
fest itself in the dynamical case, that is, in the radiation fro
a point dipole embedded in an infinite dielectric. Such a p
nomenon might be of relevance in condensed matter phys
For instance, it might give rise to classical effects in t
theory of quantum dots.
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