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(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different ways of
calculating the same thing. The first is an integral over the charge distribution; the second
is an integral over the field. These can involve completely different regions. For instance,
in the case of the spherical shell (Ex. 2.8) the charge is confined to the surface, whereas the
electric field is present everywhere outside this surface. Where is the energy, then? Is it
stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43
mplies? At the present level, this 1s simply an unanswerable question: I can tell you what
the total energy is, and I can provide you with several different ways to compute it, but it is
unnecessary to worry about where the energy is located. In the context of radiation theory
(Chapter 11) 1t 1s useful (and in General Relativity it is essential) to regard the energy as
being stored in the field, with a density

%0 E? = energy per unit volume. (2.46)

But in electrostatics one could just as well say it is stored in the charge, with a density % pV.
The difference is purely a matter of bookkeeping.

(iii) The superposition principle. Because electrostatic energy is guadratic in the
fields, it does not obey a superposition principle. The energy of a compound system is not
the sum of the energies of its parts considered separately—there are also “cross terms”:

Wtot = 6—0 Esz = 6—0 /(E] +E2)2df
2 2
€0 2 2
= Wi +Wr+ GOfEl -Erdr. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.34 Consider two concentric spherical shells, of radii @ and b. Suppose the inner
one carries a charge ¢, and the outer one a charge —¢ (both of them uniformly distributed
over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using
Eq. 2.47 and the results of Ex. 2.8.

2.5 Conductors

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will
through the material. (In liquid conductors such as salt water it is ions that do the moving.)
A perfect conductor would be a material containing an unlimited supply of completely free
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charges. In real life there are no perfect conductors, but many substances come amazingly
close. From this definition the basic electrostatic properties of ideal conductors immediately
follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those free charges
would move, and it wouldn’t be electrostatics any more. Well . . . that’s hardly a satisfactory
explanation; maybe all it proves is that you can’t have electrostatics when conductors are
present. We had better examine what happens when you put a conductor into an external
electric field Eg (Fig. 2.42). Initially, this will drive any free positive charges to the right,
and negative ones to the left. (In practice it’s only the negative charges—electrons—that
do the moving, but when they depart the right side is left with a net positive charge—the
stationary nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right side,
minus on the left. Now, these induced charges produce a field of their own, E, which, as
you can see from the figure, is in the opposite direction to Eq. That’s the crucial point, for
it means that the field of the induced charges tends to cancel off the original field. Charge
will continue to flow until this cancellation is complete, and the resultant field inside the
conductor is precisely zero.” The whole process is practically instantaneous.
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Figure 2.42

(ii) p = 0 inside a conductor. This follows from Gauss’slaw: V-E = p/ep. If E = 0,
so also is p. There is still charge around, but exactly as much plus charge as minus, so the
net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only other place it can be.

(iv) A conductor is an equipotential. For if a and b are any two points within (or at the
surface of) a given conductor, V(b) — V(a) = — j;’ E . dl1 =0, and hence V(a) = V(b).

7 Qutside the conductor the field is not zero, for here Eg and E; do not cancel.
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(v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i),
charge will immediately flow around the surface uritil it kills off the tangential component
(Fig. 2.43). (Perpendicular to the surface, charge cannot flow, of course, since it is confined
to the conducting object.)

I think it is strange that the charge on a conductor flows to the surface. Because of their
mutual repulsion, the charges naturally spread out as much as possible, but for all of them
to go to the surface seems like a waste of the interior space. Surely we could do better, from
the point of view of making each charge as far as possible from its neighbors, to sprinkle
some of them throughouit the volume. . . Well, it simply is not so. You do best to put all the
charge on the surface, and this is true regardless of the size or shape of the conductor.?

The problem can also be phrased in terms of energy. Like any other free dynamical
system, the charge on a conductor will seek the configuration that minimizes its potential
energy. What property (iii) asserts is that the electrostatic energy of a solid object (with
specified shape and total charge) is a minimum when that charge is spread over the surface.
For instance, the energy of a sphere is (1/87 ) (g% /R) if the charge is uniformly distributed
over the surface, as we found in Ex. 2.8, but it is greater, (3/ 207160)(q2 /R), if the charge is
uniformly distributed throughout the volume (Prob. 2.32).

2.5.2 Induced Charges

If you hold a charge +¢ near an uncharged conductor (Fig. 2.44), the two will attract one
another. The reason for this is that ¢ will pull minus charges over to the near side and repel
plus charges to the far side. (Another way to think of it is that the charge moves around in
such a way as to cancel off the field of g for points inside the conductor, where the total
field must be zero.) Since the negative induced charge is closer to g, there is a net force of
attraction. (In Chapter 3 we shall calculate this force explicitly, for the case of a spherical
conductor.) ‘

8By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting disk does
not all go to the perimeter (R. Friedberg, Am. J. of Phys. 61, 1084 (1993)), nor does the charge on a conducting
needle go to the ends (D. J. Griffiths and Y. Li, Am. J. of Phys. 64, 706 (1996)). See Prob. 2.52.
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By the way, when I speak of the field, charge, or potential “inside” a conductor, I
mean in the “meat” of the conductor; if there is some cavity in the conductor, and within
that cavity there is some charge, then the field in the cavity will not be zero. But in a
remarkable way the cavity and its contents are electrically isolated from the outside world
by the surrounding conductor (Fig. 2.45). No external fields penetrate the conductor; they
are canceled at the outer surface by the induced charge there. Similarly, the field due to
charges within the cavity is killed off, for all exterior points, by the induced charge on the
inner surface. (However, the compensating charge left over on the outer surface of the
conductor effectively “communicates” the presence of g to the outside world, as we shall
seein Ex. 2.9.) Incidentally, the total charge induced on the cavity wall is equal and opposite
to the charge inside, for if we surround the cavity with a Gaussian surface, all points of
which are in the conductor (Fig. 2.45), § E - da = 0, and hence (by Gauss’s law) the net
enclosed charge must be zero. But Qene = g + Ginduced » SO Ginduced = —9-

Example 2.9

An uncharged spherical conductor centered at the origin has a cavity of some weird shape
carved out of it (Fig. 2.46). Somewhere within the cavity is a charge q. Question: What is the
field outside the sphere?

Conductor

Figure 2.46



100 CHAPTER 2. ELECTROSTATICS

Solution: At first glance it would appear that the answer depends on the shape of the cavity
and on the placement of the charge. But that’s wrong: The answer is
I ¢

= T
4meq r2

E

regardless. The conductor conceals from us all information concerning the nature of the cavity,
revealing only the total charge it contains. How can this be? Well, the charge +¢ induces
an opposite charge —g on the wall of the cavity, which distributes itself in such a way that
its field cancels that of g, for all points exterior to the cavity. Since the conductor carries no
net charge, this leaves +¢ to distribute itself uniformly over the surface of the sphere. (It’s
uniform because the asymmetrical influence of the point charge +¢q is negated by that of the
induced charge —¢g on the inner surface.) For points outside the sphere, then, the only thing
that survives is the field of the leftover +¢, uniformly distributed over the outer surface.

It may occur to you that in one respect this argument is open to challenge: There are actually
three fields at work here, Ey, Ejjduced » and E jefiover . All we know for certain is that the sum
of the three is zero inside the conductor, yet I claimed that the first two alone cancel, while
the third is separately zero there. Moreover, even if the first two cancel within the conductor,
who is to say they still cancel for points outside? They do not, after all, cancel for points
inside the cavity. I cannot give you a completely satisfactory answer at the moment, but this
much at least is true: There exists a way of distributing —¢g over the inner surface so as to
cancel the field of ¢ at all exterior points. For that same cavity could have been carved out of
a huge spherical conductor with a radius of 27 miles or light years or whatever. In that case
the leftover +¢ on the outer surface is simply too far away to produce a significant field, and
the other two fields would have to accomplish the cancellation by themselves. So we know
they can do it .. . but are we sure they choose to? Perhaps for small spheres nature prefers
some complicated three-way cancellation. Nope: As we’ll see in the uniqueness theorems of
Chapter 3, electrostatics is very stingy with its options; there is always precisely one way—no
more—of distributing the charge on a conductor so as to make the field inside zero. Having
found a possible way, we are guaranteed that no alternative exists even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the field
within the cavity is zero. For any field line would have to begin and end on the cavity wall,
going from a plus charge to a minus charge (Fig. 2.47). Letting that field line be part of a
closed loop, the rest of which is entirely inside the conductor (where E = 0), the integral

Figure 2.47
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¢ E - dlis distinctly positive, in violation of Eq. 2.19. It follows that E = 0 within an empty
cavity, and there is in fact no charge on the surface of the cavity. (This is why you are
relatively safe inside a metal car during a thunderstorm—you may get cooked, if lightning
strikes, but you will not be electrocuted. The same principle applies to the placement of
sensitive apparatus inside a grounded Faraday cage, to shield out stray electric fields. In
practice, the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.35 A metal sphere of radius R, carrying charge ¢, is surrounded by a thick concentric
metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.

(a) Find the surface charge density o at R, at a, and at b.
(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero
(same as at infinity). How do your answers to (a) and (b) change?

Problem 2.36 Two spherical cavities, of radii a and b, are hollowed out from the interior of a
(neutral) conducting sphere of radius R (Fig. 2.49). At the center of each cavity a point charge
is placed—call these charges g, and gj,.

(a) Find the surface charges 0,4, 03, and og.
(b) What is the field outside the conductor?
(c) What is the field within each cavity?

(d) What is the force on g, and g3?

(e) Which of these answers would change if a third charge, g, were brought near the conductor?

Figure 2.48 Figure 2.49




