Propagación del sonido

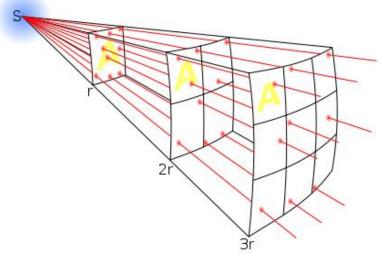
Intensidad del Sonido

El sonido es una onda viajera, lo que implica que puede **transportar energía**. La intensidad de la onda de sonido es la razón media a la cual la onda transporta la energía **por unidad de área a través de una superficie perpendicular a la dirección de propagación.**

Se denomina **intensidad sonora** (I) a la cantidad de energía por unidad de tiempo (Potencia) acústica transferida por una onda sonora por unidad de área (A) perpendicular a la dirección de propagación.

$$I = \frac{P}{A}$$

Se mide en W/m².


Cuando una onda sonora se transmite por un medio homogéneo lo hace en forma de onda esférica, por lo que el área del frente de onda es una superficie esférica ($S = 4\pi r^2$), resultando:

$$I = \frac{P}{4 \pi r^2}$$
 Ley del inverso de la distancia

Un ejemplo idealizado de fuente esférica sería una esfera pulsante, es decir una especie de "**pistón esférico**". Un ejemplo práctico puede ser el extremo de un tubo abierto dentro del cual se genera sonido, o un altavoz dentro de un bafle que emite sonidos de longitud de onda grande comparada con el tamaño del bafle

Cuando una fuente esférica es de tamaño despreciable frente a la longitud de onda que está emitiendo, se dice que es una **fuente puntual**

La intensidad en las cercanías de una fuente puntual es muy alta. Por esta razón, no existen en la práctica fuentes reales que se aproximen a fuentes puntuales, aunque éstas resultan un buen modelo si las distancias son grandes comparadas con la longitud de onda emitida.

La **intensidad sonora** disminuye al alejarse de la fuente según la razón del inverso del cuadrado de la distancia $(1/r^2)$

Como en una onda la energía es proporcional al cuadrado de la amplitud y al cuadrado de su frecuencia, al depender directamente de ella, la intensidad sonora también lo será.

Además, la intensidad sonora depende también de la **naturaleza del medio** presente entre la fuente y el oído. Cuanto **menos elástico sea el medio, menor será su valor**. Por ello se utilizan este tipo de materiales para insonorizar recintos.

Recordamos que el oído humano es capaz de percibir un rango de sonidos muy amplio, desde el umbral de audición (10⁻¹² W/m²) hasta el umbral de dolor (1 W/m²), resulta engorroso trabajar con un número grande de cifras y por ello se utiliza una escala logarítmica, en la que se utiliza como nivel de referencia el umbral de audición.

$$L_{w} = 10 \log_{10} \frac{W}{W_{0}}$$

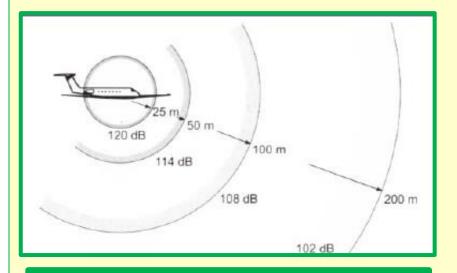
En algunos textos aparece como

$$\beta = 10 \log \frac{1}{I_0}$$

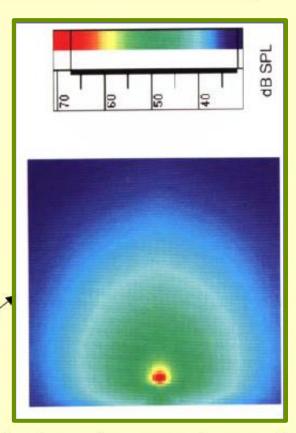
Relación del nivel sonoro en dos puntos a distancias R₁ y R₂ de la fuente

$$L_1 = 10\log\frac{I_1}{I_0} = 10\log\frac{W}{4\pi R_1^2 I_0} = 10\log\frac{W}{4\pi I_0} - 20\log R_1$$

$$L_2 = 10\log\frac{I_2}{I_0} = 10\log\frac{W}{4\pi R_2^2 I_0} = 10\log\frac{W}{4\pi I_0} - 20\log R_2$$


Restando
$$L_1 - L_2 = 20 \log \frac{R_2}{R_1}$$
 $L_2 = L_1 + 20 \log \frac{R_1}{R_2}$

$$L_2 = L_1 + 20\log\frac{R_1}{R_2}$$


El nivel sonoro disminuye 6dB

Si se duplica la distancia $(R_2=2R_1)$

$$L_2 = L_1 + 20\log\frac{1}{2} = L_1 - 6dB$$

En general las fuentes no son ni puntuales ni omnidireccionales, sino que emiten con niveles de potencia diferentes en cada dirección y en cada frecuencia

Niveles de presión sonora de un orador en el espacio libre, en la banda de 2kHz Podemos encontrar una relación entre la **potencia sonora** y la **presión sonora** eficaz para una fuente puntual o esférica

$$P_{ef}^{2} = \rho_{o}c \frac{W}{4\pi r^{2}}$$

Esta ecuación puede expresarse también como

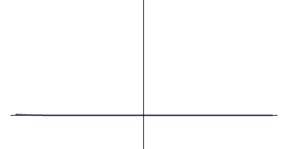
$$W = 4\pi r^2 \frac{P_{ef}^2}{\rho_0 c}$$

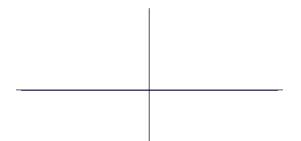
expresión útil para estimar la potencia sonora a partir del valor medido de la presión sonora a cierta distancia.

De las ecuaciones anteriores puede obtenerse, a su vez, la relación entre el nivel de potencia sonora y el nivel de presión sonora

$$L_p = L_W - 10 \log \frac{P_{ref}^2 4\pi r^2}{W_{ref} \rho_0 c}$$

que una vez reemplazados los valores correspondientes conduce a la fórmula simplificada siguiente, válida a 20 °C si la distancia r se expresa en metros

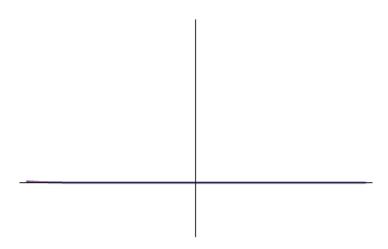

$$L_p = L_W - 20 \log r - 10.9 \, dB.$$


Esta fórmula es útil cuando se dispone de la especificación del nivel de potencia sonora de una máquina para estimar el nivel de presión sonora a diferentes distancias

Ecuación de la onda viajera

Ondas hacia la derecha

$$y = f(x - vt)$$



Ondas hacia la izquierda

$$y = g(x + vt)$$

La ecuación resultante debe admitir además que sobre la misma cuerda vibrante se propaguen simultáneamente dos o más señales, sin afectarse mutuamente. Por ello la solución general debe ser de la forma

$$y = f(x - vt) + g(x + vt)$$

Ecuación de la onda viajera

La expresión más general para una onda que viaja en la dirección x positiva es:

$$y(t,x) = y_m \sin(kx) - \phi)$$
 amplitud frecuencia angular
$$kx - \omega t + \phi \quad \text{Fase de onda} \quad \phi \quad \text{Constante de fase}$$

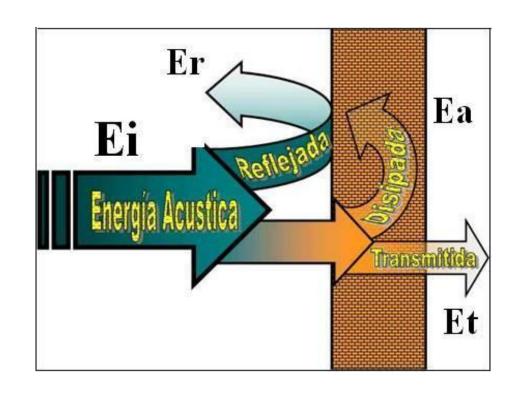
$$k=2\pi/\lambda$$
 $\omega=2\pi/T$

En función del coseno

$$y(x,t) = Acos(kx - \omega t + \phi)$$

Recordar

$$sen(\phi + \frac{\pi}{2}) = sen(\phi)cos(\frac{\pi}{2}) + cos(\phi)sen(\frac{\pi}{2})$$
$$= sen(\phi) \times 0 + cos(\phi) \times 1$$
$$= cos(\phi)$$


Fenómenos inherentes a la propagación

Cuando una onda sonora que se propaga a través de un medio, se encuentra con una superficie de separación con otro medio, su energía sonora Ei se divide:

 $\begin{array}{llll} \underline{\textbf{Reflexión}} \colon & \text{Una} & \text{onda} & \text{de} \\ \text{energía} & E_r & \text{que} & \text{vuelve} & \text{al} \\ \text{medio original.} \end{array}$

Transmisión: Una onda que cruza el obstáculo y aparece al otro lado con energía E_t .

Absorción: Parte de la energía Ea, es retenida dentro del obstáculo y convertida en calor por rozamiento.

Conservación de la energía

$$E_i = E_r + E_t + E_a$$