Corriente Eléctrica

Corriente Eléctrica y Densidad de Corriente.

Resistencia y Ley de Ohm.

Energía en los Circuitos Eléctricos.

Asociación de Resistencias.

Circuitos de una sola Malla.

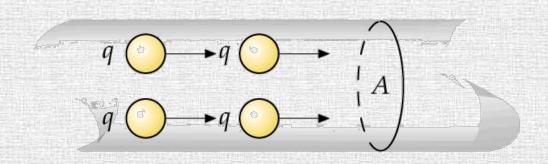
Circuito Abierto y Cortocircuito.

Potencia. Ley de Joule.

Circuitos RC

Bibliografia

- Alonso; Finn. "Física ". Cap. 24. Addison-WesLey Iberoamericana.
- Gettys; Keller; Skove. "Física clásica y moderna". Cap. 24 y 25. McGraw-Hill.
- Halliday; Resnick. "Fundamentos de física". Cap. 31 y 31. CECSA.
- Roller; Blum. "Física". Cap. 31, 32 y 33. Reverté.
- Serway. "Física". Cap. 27 y 28. McGraw-Hill.
- Tipler. "Física". Cap. 22 y 23. Reverté.


Corriente Eléctrica y Densidad de Corriente

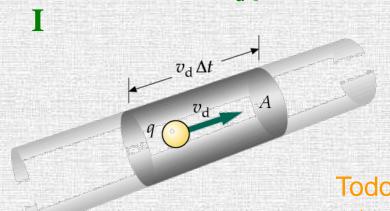
Conductor: Material en el cual algunas de las partículas cargadas (portadores de Carga) se pueden mover libremente.

Corriente Eléctrica

Flujo de Cargas Eléctricas que, por unidad de tiempo, atraviesan un área transversal

$$I = \frac{dq}{dt}$$
 Unida 1/4

Unidad: Amperio 1A = 1C/s


Sentido de la Corriente: Coincide con el de los portadores de Carga positivos.

Velocidad de desplazamiento (v_d)

Caracteriza el movimiento de los electrones dentro de un conductor sometido a un Campo Eléctrico externo.

Relación entre v_d y la Corriente

n: Densidad de portadores de Carga

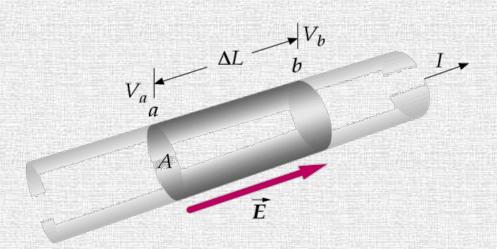
q: Carga de cada portador

V_d: velocidad de cada portador

Todos los portadores que hay en $v_d \Delta t$ pasan a través de A en un Δt .

La Carga total en el volumen $Av_d\Delta t$ es $\Delta q = qnAv_d\Delta t$

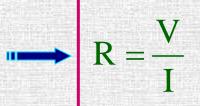
$$I = \frac{\Delta q}{\Delta t} = nqAv_d$$


Densidad de Corriente Eléctrica: Se define como la Corriente por unidad de área.

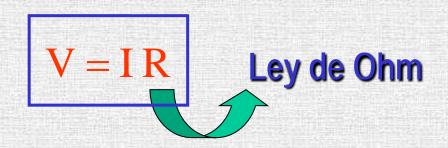
$$\vec{j} = \frac{I}{A} = n q \vec{v}_d$$

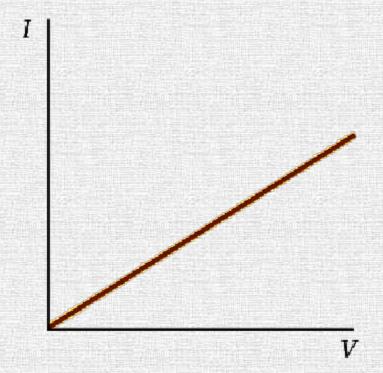
Si la velocidad de arrastre varía de un punto a otro, podemos calcular la Corriente a partir de la Densidad de Corriente.

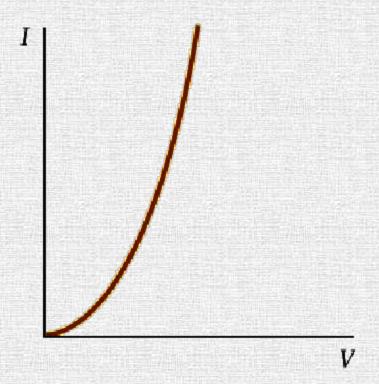
$$\mathbf{I} = \int \mathbf{\vec{j}} \cdot d\mathbf{\vec{A}}$$


Resistencia y Ley de Ohm

El Campo Eléctrico está dirigido de las regiones de mayor Potencial a las de menor Potencial.


$$V = V_a - V_b = E \Delta L$$


Resistencia Eléctrica: Es una medida de la oposición que ejerce un material al flujo de Carga a través de él.



Unidad: Ohmio

$$1 [\Omega] = 1 [V/A]$$

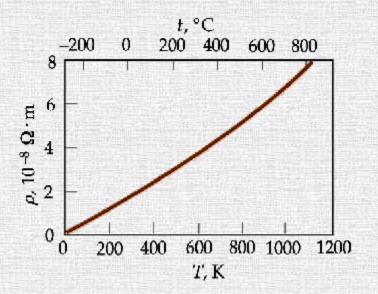
Materiales óhmicos

La Resistencia no depende de la caída de Potencial ni de la Intensidad.

Materiales no óhmicos

La Resistencia depende de la Corriente, siendo proporcional a I.

Resistividad:

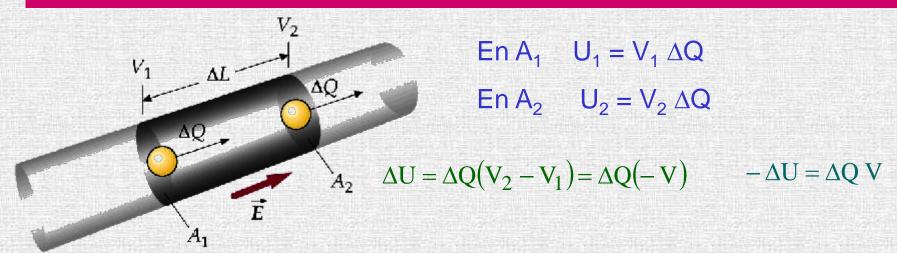

Expresa la relación entre la Resistencia de un conductor y su tamaño.

$$R = \rho \frac{L}{A}$$

Unidades de ρ : Ω .m

Conductividad:

Es la inversa de la resistividad


$$R = \frac{L}{\sigma A}$$

$$\rho = \rho_{20} [1 + \alpha (t - 20^{\circ} C)]$$

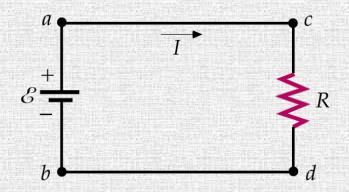
α: coeficiente de temperatura de la resistividad.

Energía en los Circuitos Eléctricos

En un conductor, el flujo de Carga positiva se hace de Potenciales altos a Potenciales bajos, mientras que los electrones lo hacen en sentido contrario. Esto se traduce en que la Carga pierde Energía Potencial y gana Energía cinética que se transforma de inmediato en Energía térmica.

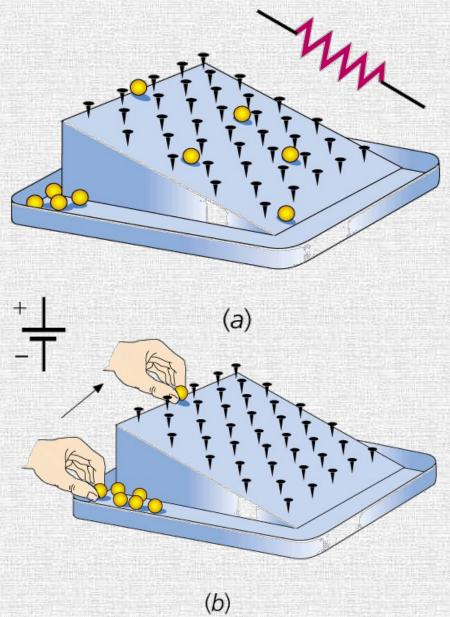
Energía perdida por unidad de tiempo

$$-\frac{\Delta U}{\Delta t} = \frac{\Delta Q}{\Delta t} V = I V$$

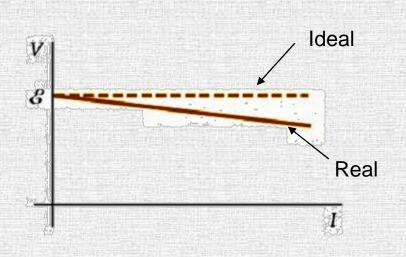

Potencia disipada

$$P = IV$$

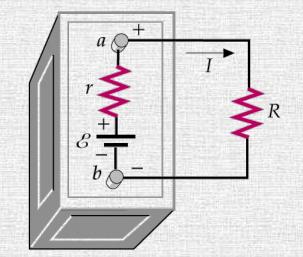
Se mide en vatios (W)


Fuerza Electromotriz y Baterías

El dispositivo que suministra la Energía Eléctrica suficiente para que se produzca una Corriente estacionaria en un conductor se llama fuente de fuerza Electromotriz (fem). Convierte la Energía química o mecánica en Energía Eléctrica


La fuente de fem realiza trabajo sobre la Carga que la atraviesa, elevando su Energía Potencial en $\Delta q \epsilon$. Este trabajo por unidad de Carga es la fem (ϵ) .

Analogía Mecánica de un Circuito Sencillo


Fuente de fem ideal: Mantiene constante la diferencia de Potencial entre sus bornes e igual a **E**.

Fuente de fem real: La diferencia de Potencial entre sus bornes disminuye con el aumento de la Corriente.

$$V = \varepsilon - I r$$

r: Resistencia interna de la batería

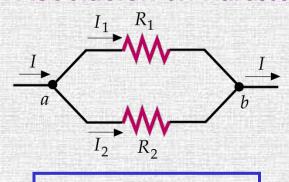
Representación de una batería real

Asociación de Resistencias

La Resistencia equivalente de una combinación de Resistencias es el valor de una única Resistencia que, reemplazada por la combinación, produce el mismo efecto externo.

$$R_{eq} = \frac{V}{I}$$

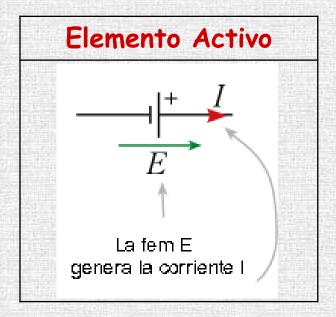
V: ddp entre los extremos de la asociación

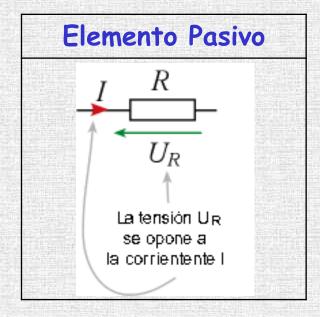

: Corriente a través de la combinación

Asociación en Serie

$$R_{eq} = \sum_{i} R_{i}$$

Asociación en Paralelo


$$\frac{1}{R_{eq}} = \sum_{i} \frac{1}{R_{i}}$$

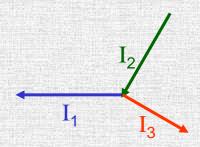

Circuitos: Elementos de un Circuito

Los Elementos que componen un Circuito Eléctrico pueden ser:

- Elementos Activos: dispositivos capaces de generar una tensión o una corriente y suministrar energía a una carga dada.
- Elementos Pasivos: aquellos que al circular corriente producen una diferencia de potencial entre sus bornes consumiendo energía.

En los **Elementos Activos**, la tensión y la corriente tienen igual signo. En los **Elementos Pasivos**, la tensión y la corriente tienen distinto signo.

Circuitos de una sola Malla

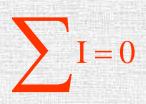

Elementos Pasivos: Son aquellos que absorben energía. Elementos Activos: Son aquellos que suministran energía.

Leyes de Kirchhoff: Son útiles para encontrar las Corrientes que circulan por las diferentes partes de un circuito o las caídas de Potencial que existen entre dos puntos determinados de dicho circuito.

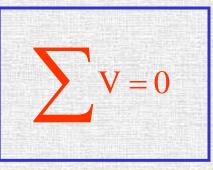
Definiciones

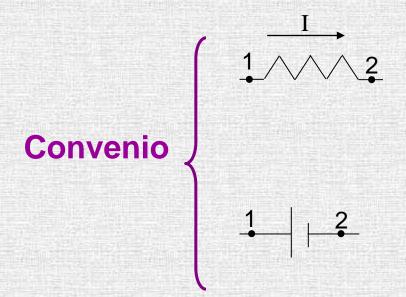
- ➤ Borne o Terminal: Unión de dos o mas bornes.
- ➤ Nodo o Nudo: Unión de dos o mas bornes.
- ➤ Malla o Lazo: Todo recorrido cerrado en un circuito.
- ➤Rama: Es un elemento o grupo de elementos conectados (en serie) entre dos nodos.

Ley de Kirchhoff de las Corrientes (LKC): En cualquier instante, la suma algebraica de todas las Corrientes que concurren en un nudo es cero.


$$I_1 - I_2 + I_3 = 0$$

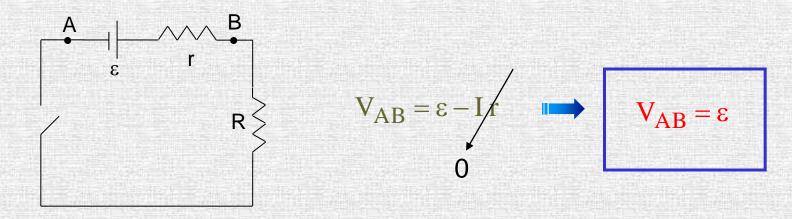
Convenio


Corrientes que salen del nudo (+)

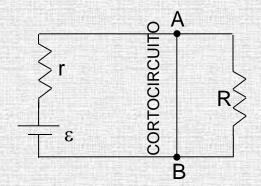

Corrientes que entran en el nudo (-)

Ley de Kirchhoff de los voltajes (LKV): La suma algebraica de todas las caídas de tensión a lo largo de una malla debe ser nula en cualquier instante.

Caída de tensión V₁₂=V₁-V₂: Energía en julios eliminada del circuito cuando una Carga de +1 C pasa del punto 1 al punto 2



En una Resistencia hay una caída de tensión positiva en el sentido de la Corriente (V₁₂>0)


En una batería hay una caída de tensión positiva en el sentido del terminal positivo al negativo, independientemente del sentido de la Corriente (V₁₂>0)

Circuito Abierto y Cortocircuito

Circuito Abierto: Es una rama de un circuito por la que no circula Corriente.

Cortocircuito: Es un recorrido de muy baja Resistencia (idealmente R=0) entre dos puntos de un circuito.

$$V_{AB} = 0$$

Potencia. Ley de Joule

1.- Energía disipada en una Resistencia

$$P = I^2R$$
 Ley de Joule

2.- Energía absorbida o cedida por una batería

Potencia de Salida: Rapidez con la que los portadores ganan Energía Eléctrica.

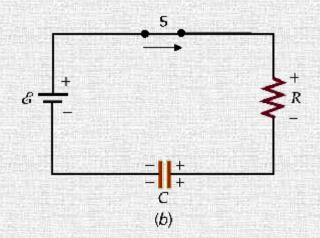
$$P_o = \varepsilon I - I^2 r$$

Potencia de Entrada: Rapidez con la que los portadores pierden Energía Eléctrica a su paso por la batería.

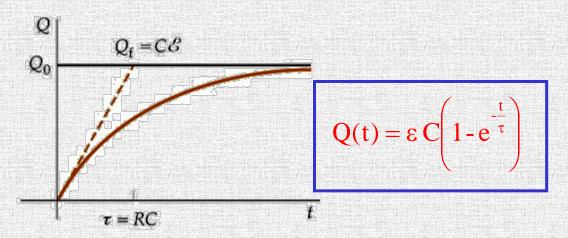
$$P_o = \varepsilon I + I^2 r$$

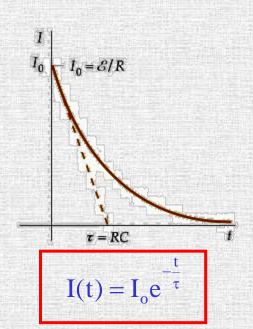
En cualquier caso P = V I, donde V es la diferencia de Potencial entre los extremos del elemento e I la Corriente que lo atraviesa.

Circuitos RC

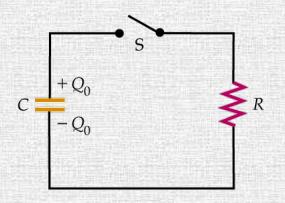

Un circuito RC está compuesto por una Resistencia y un Condensador. En dichos Circuitos la Corriente fluye en una dirección, como en un circuito de cc, pero a diferencia de éstos, la Corriente varía con el tiempo.

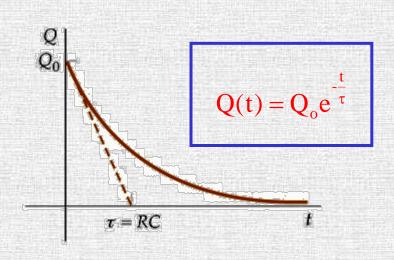
CASO 1: Proceso de Carga del condensador, inicialmente desCargado, cuando sus terminales se conectan en serie con una Resistencia y una batería.

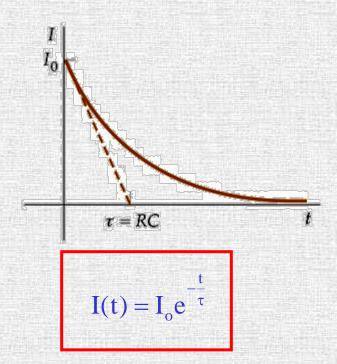

CASO 2: Proceso de desCarga del condensador, inicialmente Cargado, cuando sus terminales se conectan en serie con una Resistencia.


Ambos procesos viene definidos por un tiempo característico $\tau = R C$

Carga del Condensador


En t = 0 el condensador está descargado. Al cerrar el interruptor, existe una caída de Potencial entre los extremos de la Resistencia y el condensador empieza a Cargarse.




Condensador Cargado ≡ Circuito Abierto

Descarga del Condensador

En t = 0 el condensador está Cargado. Al cerrar el interruptor, existe una caída de Potencial entre los extremos de la Resistencia debido a la Corriente inicial y el condensador empieza a descargarse.

Condensador descargado ≡ Cortocircuito