Guía III: Trabajo y Energía

Problema 1

Para empujar una cortadora de césped sobre un prado plano, una persona aplica una fuerza constante de 250 N haciendo un ángulo de 30° sobre la horizontal. ¿Qué tan lejos empuja la persona la cortadora al hacer un trabajo de $1.44 \times 10^3 J$?

Problema 2

Un bloque de 3.0 kg resbala por un plano liso e inclinado 20° con la horizontal. Si la longitud del plano es 15 m ¿cuánto trabajo es realizado y por qué fuerza?

Problema 3

Mediante una fuerza de $2.40 \times 10^2 N$ se empuja un refrigerador de 85.0 kg sobre una superficie horizontal. La fuerza actúa con un ángulo de 20° sobre la superficie. El coeficiente de rozamiento dinámico es 0.2 y el refrigerador se mueve una distancia de 8.00m. Encuentre:

- (a) el trabajo realizado por la fuerza que lo empuja,
- (b) el trabajo realizado por la fuerza de rozamiento.

Problema 4

Un hombre de 65.0 kg de peso esta corriendo a una velocidad de 5.30 m/s.

- (a) ¿Cuál es la energía cinética de este individuo?
- (b) ¿Cuánto trabajo es realizado por la fuerza externa que acelera al individuo hasta 5.30 m/s desde el reposo?

Problema 5

La velocidad de un disco de Jockey sobre hielo decrece de 45.0 a 44.0 m/s deslizándose 16.0 m sobre el hielo. Encuentre el coeficiente de rozamiento dinámico entre el disco y el hielo.

Problema 6

Frenando abruptamente, un auto deja marcas de 65 metros de longitud. El coeficiente de rozamiento dinámico entre las ruedas y el asfalto es $\mu_d = 0.71$.

- (a) Hallar la velocidad con la cual se trasladaba el auto antes de aplicar los frenos.
- (b) ¿Cuál es la magnitud de la aceleración con que frena?

Problema 7

Un pintor que está sobre el andamio deja caer una lata de pintura de 1.50 kg desde una altura de 6.00 m. Si se desprecia la resistencia del aire:

- (a) ¿Cuál es la energía cinética de la lata cuando está a una altura de 4.00 m?
- (b) ¿Con qué rapidez llegará la lata al suelo?

Problema 8

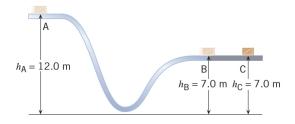
Una gomera dispara una piedra desde lo alto de un edificio a una velocidad de 10.0 m/s. El edificio tiene una altura de 20.0 m. Ignorando la resistencia del aire, calcule la velocidad con la que la piedra golpea contra el suelo si la piedra es lanzada

- (a) horizontalmente
- (b) verticalmente hacia arriba
- (c) verticalmente hacia abajo

Problema 9

La figura muestra dos tanque de combustible vacíos, arrojados por dos aviones diferentes. En el momento que se los deja caer cada avión tiene la misma rapidez 135 m/s y cada tanque se encuentra a la misma altura, 2.00 km encima del suelo. Uno de los aviones está volando a 15° encima de la horizontal mientras que el otro lo hace a 15° debajo de la horizontal. Encuentre la magnitud de la velocidad con que el tanque de combustible llega al suelo si

- (a) parte del avión A,
- (b) parte del avión B.

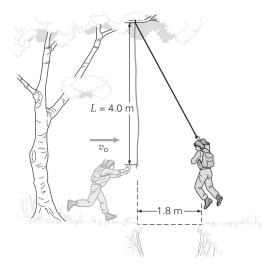

Comprobar los resultando obtenidos mediante cálculos de Cinemática.

Problema 10

Una bala de 10 g es disparada verticalmente hacia arriba con una rapidez inicial de 200 m/s. Si la bala llega a una altura máxima de 1.2 km ¿qué porcentaje de energía mecánica se pierde por la resistencia del aire?

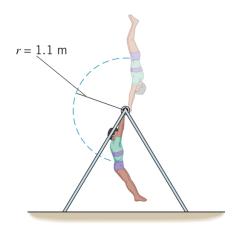
Problema 11

La figura muestra un bloque de 0.41 kg deslizándose desde el punto A hacia B, a través de una superficie sin fricción. Cuando el bloque alcanza el punto B, continua deslizándose a través de una superficie rugosa hasta alcanzar el punto C donde se detiene. Si la energía cinética del bloque en el punto A es de 37 J y las alturas de los puntos A y B son de 12 m y 7 m respectivamente sobre el suelo:

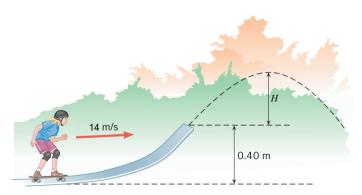

- (a) ¿ Cuál es la energía cinética del bloque cuando se encuentra en el punto B?
- (b) ¿ Cuanto trabajo hace la fuerza de fricción durante el tramo B-C ?

Problema 12

Una bala de 3.0 g viaja a 350 m/s, pega contra un árbol y penetra una distancia de 12cm. ¿Cuál es la fuerza promedio ejercida sobre la bala para llegar al reposo?


Problema 13

Una excursionista planea balancearse colgada de una cuerda de 4 m de longitud para caer del otro lado del barranco, como se muestra en la figura. ¿Cuál es la rapidez horizontal v_o mínima con que debe moverse cuando inicia el balanceo?


Problema 14

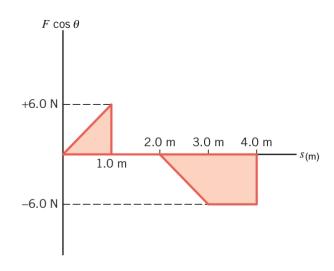
Un gimnasta se balancea alrededor de una barra. La distancia entre su cintura y la barra es 1.1 m, como muestra la figura. En la parte superior de su giro su velocidad vale momentáneamente cero. Despreciando el rozamiento y considerando que toda la masa del gimnasta está localizada en su cintura, encontrar su velocidad en la parte inferior del giro

Problema 15

Un patinador toma una rampa con una rapidez de 14.0 m/s, como muestra la figura. En la parte más alta del salto su velocidad tiene una magnitud de 13.0 m/s. Despreciando la resistencia con el aire, determinar la altura H del patinador (por encima de la rampa) en su punto más alto.

Problema 16

Un piano de 3.00×10^2 kg está siendo elevado mediante una soga desde el suelo hacia un departamento ubicado a 10.0 m sobre el suelo. La grúa que lo está elevando tiene una potencia de 4.00×10^2 W. ¿Cuánto tiempo demandará subir el piano?


Problema 17

Una motocicleta (masa de la motocicleta más el conductor $= 2.5 \times 10^2$ kg) está viajando a una velocidad de 20.0 m/s. La fuerza de la resistencia del aire que actúa sobre la motocicleta y el conductor es de 2.00×10^2 N. Halle la potencia necesaria para mantener esta velocidad si el asfalto esta nivelado.

Problema 18

La componente de la fuerza a lo largo del desplazamiento varía con la magnitud del desplazamiento, como se muestra en el gráfico. Encontrar el trabajo realizado por la fuerza en el intervalo desde

