B.7 Integral Calculus

We think of integradon as the inverse of differentiation. As an example, consider the
expression

flx) =—= Sax® + b (B.34)

which was the result of differentiating the function
yix) = ax> + bx + ¢

in Example 4. We can write Equation B.34 as dy = fix) dx = (%ax? + b) dxand obtain
yix) by “summing” over all values of x. Mathemarically, we write this inverse operation

yix) = Jﬂx‘j dx
For the function f(x) given by Equation B.34, we have
yix) = J (Bax + b) dx= ax” + bx + ¢

where ¢ is a constant of the integration. This type of integral is called an indefinife inte-
gral because its value depends on the choice of @
A general indefinite integral [(x) is defined as

I(x) = Jf(r) dx (B.35)

where f(x) is called the integrand and f(x) = dlix)/ dx.

For a general continuous funcion f(x), the integral can be described as the area un-
der the curve bounded by fix) and the x axis, between two specified values of x, say, x;
and xg, as in Figure B.14.

The area of the blue element is approximately f(x;) Ax,. If we sum all these area el-
ements from x; and xo and take the limit of this sum as Ax; — 0, we obtain the frue

Table B.4

Derivative for Several
Functions
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— (a) =
moo_ n—1

i (ax™) THLX

d
= (%) = ae®

d’ 3 _—

e (sin ax) = a cos ax
= (cos ax) = —asin ax
dx

d — 2
I (tan ax) = asec” ax
d 9
T{cut ax) = —acsc-dx
x

d
—(sec x) = tan xsec x
dx

d
H{csc x] = —colt xcsc x

Noife: The symbols g and n
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Figure B.14
area under the curve bounded by f(x) and x, between the limits x; and xo:
X2
Area = lim Y f(x;) Ax; = J f(x) dx (B.36)
Ax— 07 x1

Integrals of the type defined by Equation B.36 are called definite integrals.
One common integral that arises in practical situations has the form

j xntl
Ny = + *+ —1 B.37
X" ax nt 1 ¢ (n ) ( )
This result is obvious, being that differentiation of the right-hand side with respect to x
gives f(x) = «x" directly. If the limits of the integration are known, this integral becomes
a definite integral and is written

X9 n+1l |xo ol n+1
f X dx = — = X2 aal (n# —1) (B.38)
x n+ 1l n+1
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Partial Integration

Sometimes it is useful to apply the method of partial integration (also called “integrating
by parts”) to evaluate certain integrals. The method uses the property that

J'u dv = uv — fv du (B.39)

where u and v are carefully chosen so as to reduce a complex integral to a simpler one.
In many cases, several reductions have to be made. Consider the function

I(x) = foexdx

This can be evaluated by integrating by parts twice. First, if we choose u = x2, v = ¢¥,

fxgexdx = fo d(e®) = x%e* — QJexx dx + ¢

Now, in the second term, choose u = x, v = ¢%, which gives

we obtain
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fx%xdx = x2¢" — 2xe* + QJexdx + ¢
or

fx%”dx = x2e* — 2xe* + 2¢* + ¢

The Perfect Differential

Another useful method to remember is the use of the perfect differential, in which we look
for a change of variable such that the differential of the function is the differential of the
independent variable appearing in the integrand. For example, consider the integral

I(x) = jcost sin x dx

This becomes easy to evaluate if we rewrite the differential as d(cos x) = —sin x dx.
The integral then becomes

Jcos2x sin x dx = — fcosgx d(cos x)
If we now change variables, letting y = cos x, we obtain
3 3
fcostsinxdx= —nydy = —y?-i- c= - CO; * 4 c

Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s probability
integral and other definite integrals. A more complete list can be found in various
handbooks, such as The Handbook of Chemistry and Physics, CRC Press.

Table B.5

Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)
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Table B.5
Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.) continued
ax sin 2
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Table B.6

Gauss’s Probability Integral and Other Definite Integrals

x"e” W dx = —a T
0 a"

* ; 1
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B.8 Propagation of Uncertainty

In laboratory experiments, a common activity is to take measurements that act as raw
data. These measurements are of several types—Iength, time interval, temperature,
voltage, etc.—and are taken by a variety of instruments. Regardless of the measure-
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