
Estigmatismo

Sistema Óptico

- Sistema óptico es un conjunto de superficies que separan medios con índices de refracción diferentes.
- Si las superficies son de revolución, y sus centros están alineados, la recta que los une se denomina eje óptico.
- Dióptrico un sistema formado por superficies refractantes
- Catóptrico un sistema formado por superficies reflectantes
- Catadióptrico un sistema formado por superficies refractantes y reflectantes
- La luz se propaga de izquierda a derecha

Sistema óptico centrado

Objeto y imagen

- El punto emisor de donde salen los rayos se denomina objeto; El punto donde se juntan los rayos, una vez pasado el sistema óptico es su imagen.
- Si los rayos pasan físicamente por un punto se denomina real. El punto es virtual si llegan o salen las prolongaciones de los rayos.
- El conjunto de puntos objeto forma el espacio objeto mientras que el conjunto de puntos imagen forma el espacio imagen.
- Espacio objeto real (virtual): la zona del espacio anterior (posterior) de la superficie de la entrada del sistema.
- Espacio imagen real (virtual): la zona del espacio posterior (anterior) de la superficie de la salida del sistema.

Sistema óptico perfecto

 Un sistema óptico es perfecto si se puede establecer una relación de semejanza entre todo el espacio objeto y todo el espacio imagen. Esta condición no es físicamente viable.

Condiciones de Maxwell:

- 1. A un plano normal en el eje óptico en el espacio objeto le corresponde otro plano normal al eje óptico en el espacio imagen.
- 2. Todos los rayos que entran en el sistema partiendo de un punto pasan a la salida por otro punto (real o virtual).
- 3. Toda figura contenida en un plano perpendicular al eje, se representa como una figura semejante contenida también en un plano perpendicular al eje, en el espacio imagen.

Condición de estigmatismo

- Un sistema se comporta estigmáticamente entre dos puntos O y O* cuando todos los rayos que salen de un punto objeto O (real o virtualmente) van a parar a un punto imagen O* (real o virtualmente).
- Los puntos O y O* son puntos conjugados
- Principio de Fermat: el camino óptico que sigue la luz para ir del O a O* debe ser estacionario → El camino óptico recorrido por los diferentes rayos entre O y O* es constante.
- Los tramos virtuales del camino óptico se toman con el signo negativo
- Existen algunos superficies para las cuales la condición de estigmatismo cumple de forma rigurosa. Para otros sistemas se cumple aproximadamente

Estigmatismo en superficies refractantes

- La constancia del camino óptico para un par de puntos conjugados situados en el eje → Ovalo de Descatres
- Ecuación de cuarto grado (cuárticas) O(x₀,0), O*(x*₀,0),
 Q (x,y) un punto cualquiera del ovalo
 - Dos puntos son reales o virtuales

$$n\sqrt{(x-x_0)^2+y^2}+n'\sqrt{(x-x_0^*)^2+y^2}=k=cte$$

Un punto es real y otro es virtual

$$n\sqrt{(x-x_0)^2+y^2}-n'\sqrt{(x-x_0^*)^2+y^2}=k=cte$$

- Un punto situado en el infinito (ambos puntos reales) : una familia de cónicas $n\sqrt{x^2+y^2}+n'(l-x)=k=cte$
- n<n' un hiperboloide</p>
- n>n´un elipsoide

Puntos conjugados del dioptrio esférico

- La constancia del camino óptico sólo para un par de puntos conjugados: puntos de Weierstrass o puntos de Young
- Ovalo de Decartes para un punto real y otro virtual con k=0 $n\sqrt{(x-x_0)^2+y^2}=n'\sqrt{(x-x_0^*)^2+y^2}$
- Centro de esfera origen de coordenadas
- x_0 y x_0 * tienen el mismo signo

$$n'^2 x *_0 = n^2 x_0$$
 $x_0 = \frac{n'}{n} R$ $x *_0 = \frac{n}{n'} R$

- Un dioptrio concavo: R negativo; O real, O* virtual
- Un dioptrio convexo: R positivo; O virtual, O* real

Estigmatismo en superficies reflectantes

- La constancia del camino óptico para cualquier par de puntos conjugados O y O* (Q es un punto arbitrario que pertenece a la superficie reflectante) → Espejo plano OQ=QO*
- La constancia del camino óptico sólo para un par de puntos conjugados O y O*
 - Espejo elíptico OQ+QO*=k=cte: puntos conjugados (ambos reales o virtuales) = puntos focales
 - Espejo hiperbólico OQ-QO*=k=cte : puntos conjugados (uno real, otro virtual) = puntos focales
 - Espejo parabólico: puntos conjugados (ambos reales o virtuales) = punto focal y punto en infinito)

Condiciones del seno de Abbe y de Herschel

■ La superficie refractante que relaciona estigmaticamente las parejas de puntos (A_0, A_1) y (B_0, B_1) : B_0 esta situado en el plano normal al eje óptico próximo a A_0

Condición del seno de Abbe

■ La superficie refractante que relaciona estigmaticamente las parejas de puntos (A_0, A_1) y (C_0, C_1) : C_0 esta situado en el eje óptico próximo a A_0 → Condición de Herschel

$$n_0$$
 n_1
 C_0
 A_0
 B_0
 C_1
 A_1
 C_1
 B_1

$$\frac{sen\theta_0}{sen\theta_1} = \frac{n_1 \left| A_1 B_1 \right|}{n_0 \left| A_0 B_0 \right|} = cte$$

$$\frac{sen^{2}(\theta_{0}/2)}{sen^{2}(\theta_{1}/2)} = \frac{n_{1}|A_{1}C_{1}|}{n_{0}|A_{0}C_{0}|} = cte$$

 Dos condiciones son compatibles solo en la aproximación paraxial

$$sen\theta_i \approx \theta_i \quad \cos \theta_i \approx 1 \quad i = 0,1$$

Convenio de signos

		Valor positivo	Valor negativo
Distancias a lo largo	s, s'	Derecha de la superficie	Izquierda de la superficie
del eje			
Radios de curvatura	r	Centro a la derecha de la superficie	Centro a la izquierda de la superficie
Distancias normales	y, y', h	Sobre el eje óptico	Bajo el eje óptico
al eje			
Ángulos de incidencia,	$\epsilon, \epsilon', \epsilon'',$	Sentido horario	Sentido antihorario
refracción y reflexión	ω, ω'	(girando hacia la normal)	(girando hacia la normal)
Ángulos con el eje	σ , σ' , φ	Sentido antihorario	Sentido horario
		(girando hacia el eje óptico)	(girando hacia el eje óptico)