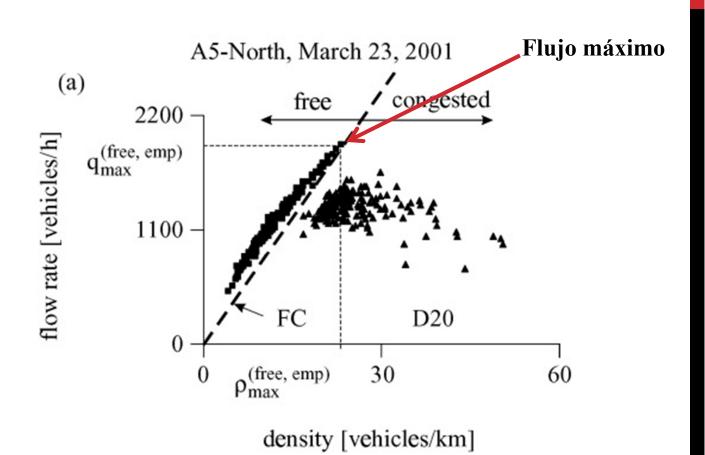


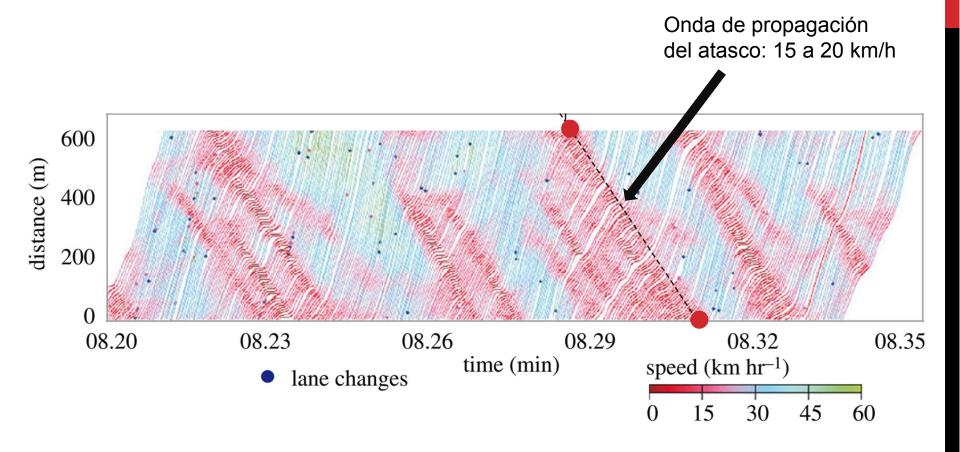
Modelos estadísticos del tráfico. Puede la tecnología ofrecernos una solución?

EL MAYOR ATASCO DE TRÁFICO?[1]

- Autopista Beijing-Tibet
- Mas de 100km!!!
- Duración: mas de 10 días!
- Hasta 5 días atascados



- Las causas?
 - > Mucho tráfico pesado (camiones transportando carbón).
 - Carriles cerrados por mantenimiento.
 - ➤ Mal clima (neblina).


DEFINICIÓN: TRAFICO CONGESTIONADO[2]

Estado del tráfico donde la velocidad promedio de los vehículos es menor que la velocidad posible en trafico libre^[3].

$$q = v\rho$$

DIAGRAMAS ESPACIO-TEMPORALES^[4]

¿Por qué se producen los atascos?

MODELO MACROSCÓPICO O CONTINUO

Supongamos que no hay entrada ni salida de vehículos (conservación de vehículos)

$$\partial_t \rho + \partial_x (\rho v) = 0$$

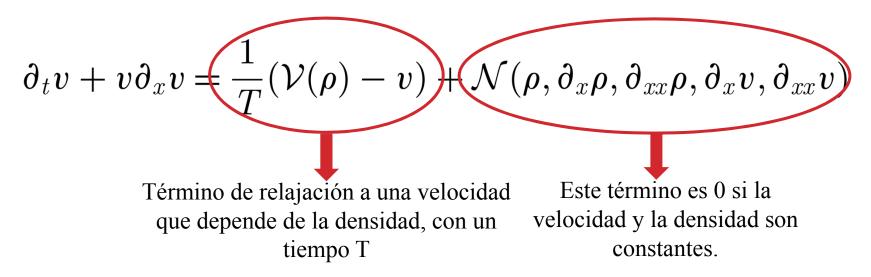
Se propone un relación entre la densidad y la velocidad de la forma:

$$v = \mathcal{G}(\rho, \partial_x \rho, \partial_{xx} \rho, \ldots)$$

1° Orden:

Lighthill y Whitman (1955):

$$v = \mathcal{V}(\rho)$$


Donde $\mathcal{V}(
ho)$ es una función decreciente.

Bajo ciertas condiciones, aparecen desaceleraciones infinitas!!

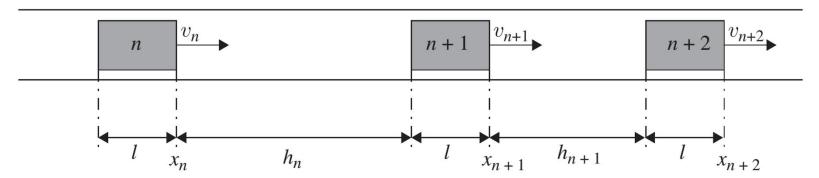
MODELO MACROSCÓPICO O CONTINUO

2° Orden (vehículos con inercia):

Ahora la ecuación propuesta es:

Este modelo reproduce bien flujos uniformes así como ondas stop-and-go (sin discontinuidades)

MODELO MACROSCÓPICO O CONTINUO


Ventajas:

- Los resultados pueden ser comparados directamente con datos macroscópicos, tales como diagramas flujodensidad y espacio-temporales
- Es fácil definir las condiciones de borde para la velocidad y el flujo

Desventajas:

- Es difícil relacionar los parámetros del modelo con los parámetros microscópicos de los conductores
- No están claras cuales limitaciones son impuestas al modelar sistemas discretos como si fueran continuos.

Entidades discretas (vehículos) moviéndose en un tiempo y espacio continuos.

Derivando
$$h_n(t) = x_{n+1}(t) - x_n(t) - \ell$$
 :
$$\dot{h}_n(t) = v_{n+1}(t) - v_n(t)$$

Para completar el modelo nos falta una regla que relacione la velocidad o aceleración de cada vehículo con los de sus alrededores.

En modelos dinámicos la aceleración:

$$\dot{v}_n(t) = f(h_n(t-\tau), \dot{h}_n(t-\sigma), v_n(t-\kappa))$$

Donde τ, σ, κ representan los tiempos de reacción.

Generalmente:

- Para humanos: $\tau = \sigma > 0, \kappa = 0$
- Para coches autónomos: $\tau = \sigma = \kappa > 0$.El delay se debe al tiempo necesario para que el sistema cense sus alrededores, haga los cálculos y actue.

MODELO MICROSCÓPICO^[5]

Modelo del conductor inteligente (IDM):

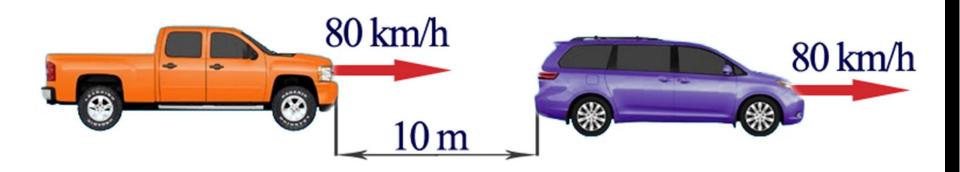
$$f(h, \dot{h}, v) = a \left[1 - \left(\frac{v}{v_{\text{max}}} \right)^4 - \left(\frac{h_{\text{stop}} + v T_{\text{gap}} - \dot{h}v / \sqrt{4ab}}{h} \right)^2 \right]$$

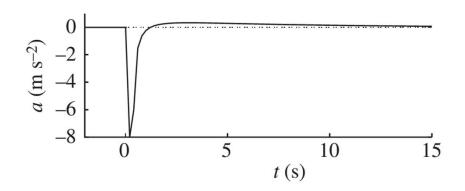
- a: Máxima aceleración
- $oldsymbol{\cdot}$ b : Desaceleración deseada o de confort
- $v_{
 m max}$: Máxima velocidad deseada
- $m{\cdot}\ h_{
 m stop}$: Distancia de frenado deseada
- ullet $T_{
 m gap}$: Distancia temporal deseada

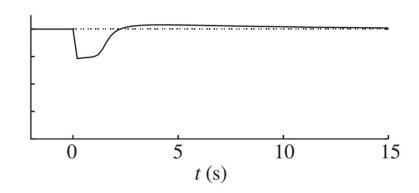
Todos estos valores se obtienen fiteando el modelo a los datos.

Modelo heurístico aceleración constante (CAH):

- La aceleración de los vehículos no cambiará en un futuro relevante.
- No se requiere distancia mínima ni distancia temporal.
- Los conductores reaccionan sin delay.


$$a_{\text{CAH}}(s, v, v_{\text{l}}, a_{\text{l}}) = \begin{cases} \frac{v^2 \tilde{a}_l}{v_{\text{l}}^2 - 2s \tilde{a}_l} & \text{if } v_{\text{l}}(v - v_{\text{l}}) \leq -2s \tilde{a}_l, \\ \\ \tilde{a}_l - \frac{(v - v_{\text{l}})^2 \Theta(v - v_{\text{l}})}{2s} & \text{otherwise,} \end{cases}$$

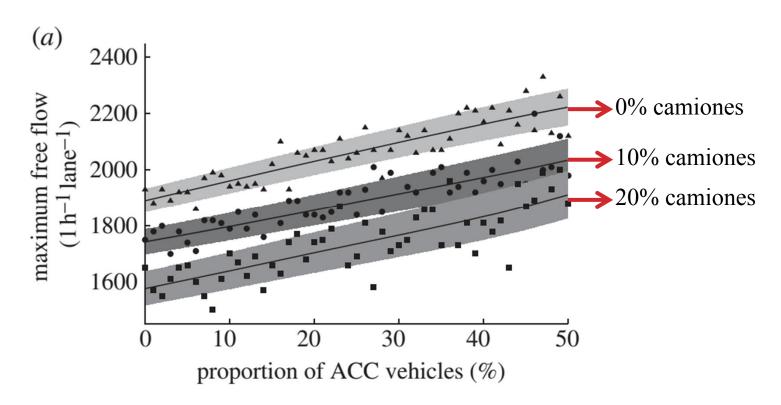

Modelo de control crucero adaptativo (ACC):


- a_{ACC} nunca es menor que a_{IDM}
- Si a_{IDM}=a_{CAH}, entonces a_{IDM}=a_{CAH}=a_{ACC}
- Si el modelo IDM produce desaceleraciónes muy grandes, mientras que el modelo CAH no, a_{ACC}=a_{CAH}-b
- Si IDM y CAH producen desaceleraciones muy grandes, a_{ACC} no debe ser mayor que el maximo de a_{IDM} y a_{CAH.}
- a_{ACC} debe ser continua y diferenciable.

$$a_{\text{ACC}} = \begin{cases} a_{\text{IDM}} & a_{\text{IDM}} \ge a_{\text{CAH}}, \\ (1-c)a_{\text{IDM}} + c \left[a_{\text{CAH}} + b \tanh \left(\frac{a_{\text{IDM}} - a_{\text{CAH}}}{b} \right) \right] & \text{otherwise.} \end{cases}$$

ACC VS IDM

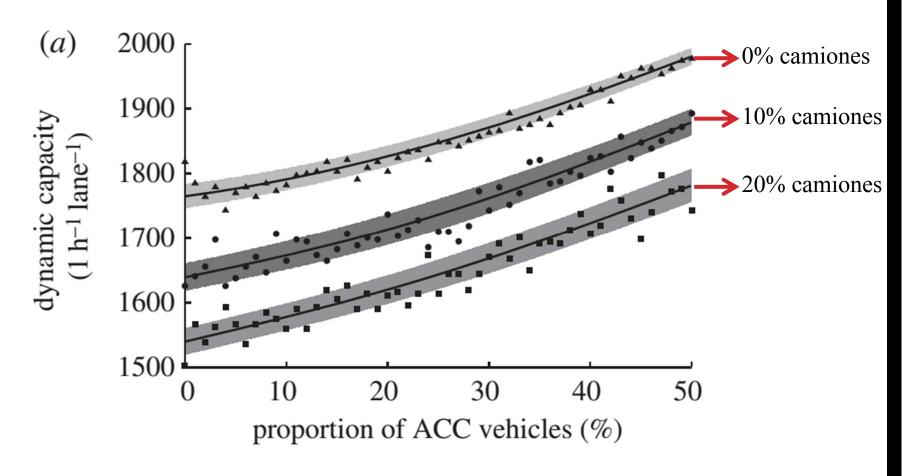
IDM


ACC

Estrategia de manejo adaptada al tráfico (ACC):

- Tráfico libre: Valores default.
- Entrando en un atasco: El objetivo es aumentar la seguridad disminuyendo el gradiente de velocidades. Esto implica un frenado prematuro al acercarse a vehículos mas lentos.
- Dentro del atasco: Como los conductores no pueden influenciar el desarrollo del atasco en el medio del mismo, los valores son los default.
- Saliendo de un atasco: Aumento de la aceleración y disminución de distancia temporal
- Cuello de botella: disminución de distancia temporal.

INCLUSIÓN DE AUTOMÓVILES AUTÓNOMOS


Flujo máximo en función de proporción vehículos autónomos

1% Vehículos autónomos -> 0,3% flujo máximo

INCLUSIÓN DE AUTOMÓVILES AUTÓNOMOS

Capacidad dinámica en función de proporción vehículos autónomos:

REFERENCIAS

- [1] http://www.telegraph.co.uk/news/worldnews/asia/china/11919370/Worlds-worst-traffic-jam-Thousands-of-cars-left-stranded-on-motorway-in-China.html
- [2] "Traffic jams: dynamics and control" G. Orosz, R. E. Wilson and G. Stépan.
- [3] "The physics of traffic" B S Kerner
- [4] "A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic" J. A. Laval y L. Leclercq.
- [5] "Enhanced intelligent driver model to acces the impact of driving strategies on traffic capacity" A. Kesting, M. Treiber y D. Helbing.