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An alternate derivation of the Stokes polarization parameters is presented; the parameters
are obtained from the elliptic equation of polarization rather than the plane wave equations.
As a result of deriving the parameters in this manner, the relationship between the polari-
zation ellipse and the Stokes parameters is clarified. The Stokes parameters for various
states of polarized light are briefly reviewed. The remainder of this article is then devoted
to obtaining the Stokes parameters for a number of important physical phenomena such as
the classical Zeeman effect, synchrotron radiation, Thomson scattering, reflection of electro-
magnetic waves by dielectric surfaces, and wave propagation in a plasma.

INTRODUCTION

The representation of plane monochromatic
electromagnetic waves in the form of an ellipse
to describe wave polarization is well known.!
This description of light is very useful as it en-
ables us to describe by means of a single equation
various states of wave polarization. However,
this representation is inadequate for two reasons.
As the beam of light propagates through space
we find that in a plane, transverse to the direction
of propagation, the light vector traces out an
ellipse or some special form of an ellipse such as a
circle or a straight line in a time interval of the
order of 107 sec. This period of time is clearly
too short to allow us to follow the tracing of the
ellipse. The other reason for the deficiency is that
in nature the state of polarization is continually
changing since the amplitudes and phases of the
electromagnetic waves vary in time. Thus, the
polarization ellipse is an idealization of the true
behavior of radiation; it is only correct at any
given instant of time. These limitations force us
to consider only average values of the electro-
magnetic field, i.e., we must represent polarized
light in terms of observables.

In order to remedy this situation, G. G. Stokes,
as far back as the year 1852, introduced four
quantities now known appropriately as the
Stokes polarization parameters as an alternate
way of describing polarization.? These parameters
are expressed only in terms of the observables of
the electromagnetic field, namely, the intensity

1 M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Inc.,, New York, 1965), 3rd ed.
2 G. G. Stokes, Trans. Camb. Phil. Soc., 9, 399 (1852).

and relative phase difference between the orthog-
onal wave components. In addition, they are
applicable to completely polarized or partially
polarized light. Thus, they give a complete
description of polarized light.

In the present paper we obtain the Stokes
parameters from the polarization ellipse rather
than the plane wave equations as is done, for
example, by Chandrasekhar? Alternatively, we
can obtain the Stokes parameters directly from
the complex representation of the electromagnetic
fields enabling us to formally bypass the time
integrations. As a result, we see that the formalism
of the Stokes parameters is far more versatile
than originally envisioned and possess a greater
usefulness than is commonly known.

I. THE STOKES PARAMETERS

We consider a pair of plane waves which are
orthogonal to each other and not necessarily
monochromatic to be represented by the
equations!

E.(t) = Eo.(t) cos[wt+6.(8) ],
Ey(t) =Ey(t) cos[wi+8,(1) ];

where FEy.(1) and E,(¢f) are the instantaneous
amplitudes, « is the instantaneous angular fre-
quency, and §,(f) and §,(¢) are the instantaneous
phase factors. At all times the amplitudes and
phase factors fluctuate slowly compared to the
rapid vibrations of the cosinusoids. The explicit
removal of the term wi between (la) and (1b)
yields the familiar polarization ellipse which is

(1a)
(1b)

38. Chandrasekhar, Radiative Transfer (Oxford Uni-
versity Press, London, 1950}, p. 28.
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valid, in general, only at a given instant of time,

B2 | B0 2B.(0)E,(0)
EOxz(ﬂ Eﬂyz(t) Eﬂx(t)Eﬂzi(t)

cosd (t)
= sin% (i), (2)
where 6(t) =8,(t) —0.(t).

If we have monochromatic radiation, the
amplitudes and phases are constant for all time,
80 (2) reduces to

E2(t) | B 2B.()E,(Y)
E 022 E Oy2 E O:cE 0y

While Fg, Eo, and § are constants, F, and E,
continue to be implicitly dependent on time as
we see from Egs. (1a) and (1b). Hence, we have
written E.(¢) and £,(t) in (3). In order to repre-
sent Fq. (3) in terms of the observables of the
electromagnetic field, we must take a time average
over an infinite interval of time. In view of the
periodicity of E,(t) and F,(f) we need average
Eq. (3) only over a single period of vibration. We
represent this average in time by the symbol
{--+). We now take the time average of Eq. (3),

cosd = sin2.

(3)

EL0) | B 2E0E0)
E012 FJ()y2 EOIEOy ,
= sin®, (4)
where
[
(B:()BE;(0)=T7 | B B (D, 1L,J=L, Y.
[
Multiplying Eq. (4) by 4E,.2E,’* we get
(4Fo?) (B2 (1) )+ (4Eo?) (B (1) )
—8(EoBuw) (B (1) E,(£) ) cosd
= (2E 0, Ey, sind)2  (5)

From Eqs. (1a) and (1b), we easily find the
average values indicated in Eq. (5) to be

(B2 )y=3%H:.2, (6a)
(B (8) )=3Eu/, (6b)
(B () E,(8))=1EyFEo, coss. (6¢)
Substituting Fgs. (6a), (6b), and (6¢) into
Eg. (5) yields
(2E02E0) + (2E2E0%) ~ (2B, Eo, cosd)?
= (2B By sind)% (7

COLLETT
Adding and subtracting the quantity o'+ FEg?
to the left-hand side of Eq. (7) leads to
(Eﬂa?'f’" E0y2) 2 (E()zZ-“Eoyz) 2 (2E01Equ COS&) z
= (2FEEy, sind)2  (8)

We now write the quantities inside the paren-
theses as

So=Loa+ Iy, (9a)

1= FEo* ~ Eoft, (9b)

8y=2Fo.Eyy; c0s8, (9¢)

s3=2F . Fy, sing, (9d)
and write Eq. (8) as

sof = 81282557 (10)

The four quantities represented by KEq. (9) are
the Stokes polarization parameters. We see that
the Stokes parameters are simply the observable
of the polarization ellipse and hence the radia-
tion field. The first Stokes parameter is the total
mtensity of the radiation while the remaining
quantities describe the state of polarization of the
light beam.

If we now have partially polarized light, then
we see that the relations given by Eq. (9) con-
tinue to be valid for very short time intervals
since the amplitudes and phases fluctuate slowly.
From this Chandrasekhar has shown that com-
pletely polarized or partially polarized light is
represented by?

8022 812 8274857

The equality sign applies when we have com-
pletely polarized light. The Stokes parameters
possess a number of interesting properties which
are treated in an excellent manner by Chandrasek-
har.? More modern treatments of polarization are
presented by Born and Wolf! McMaster,* and
Walker.®

In the treatise by Born and Wolf, it is shown
that the ellipticity of the polarization ellipse is
given by the equation

siny = 83/ (812 8,2+ 82) 12, (12)

where tanx=>5b/a; b/a is the ratio of the semi-
minor axis to the semimajor axis. The orientation

(1)

*' W, H. McMaster, Am. J. Phys, 22, 351 (1954).
¢ M, J. Walker, Am. J. Phys., 22, 170 (1954).
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angle ¥ of the ellipse is given by
tan2y =s,/s1, (13)
while the degree of polarization @ is given by
®=TIpo1/ 1ot
= (8282 +-55%) 12/ 50,

The Stokes parameters can be obtained directly
without having to go through the formalism of
time averaging the polarization ellipse. This is
accomplished by writing Eqs. (1a) and (1b) in
complex notation,

E.(t) =Eq, exp[i(wt+3,) ]

0<e<1. (14)

=&, exp (wt), (15a)
E,(t) =Ey eXp[i(wt—l—By)]
=&y, exp (twt) ; (15b)
where
&op = Eo, exp(15,), (16a)
and
Eoy = Koy exp (16, . (16b)

8o and &, are complex amplitudes. Writing the
plane wave equations in complex notation allows
us to bypass formally the time-averaging process
since the Stokes parameters are now obtained by
using the formulas

80= 802805+ 80480, = B>+ E,, (17a)
81= 80,80 — 80y S0y * = Fo.? — Fop), (17b)
8a= 80,80 * + 805 80y = 2E 0, Fpy 0SS, (17¢)
and
53=1(Eaaboy™ — E0s*E0y) = 2E0nEyy sind.  (17d)

Equations (16) and (17) can be treated as the
defining equations for the Stokes parameters.

As shown by Perrin, the Stokes parameters can
be written as four elements of a single column
matrix. This is usually written as {s, s1, ss, 83}
where the curly braces remind us that we are
actually dealing with a column matrix.

In order to obtain a better understanding of
the results that will be presented later, we briefly
review the representations of various states of
polarized light in terms of the Stokes parameters.

¢ F. Perrin, J. Chem. Phys., 10, 415 (1942).
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For further details, the reader should consult the
text of Shureliff.”

a. Linearly Polarized Light

In this case the phase angle § is zero or =, so
the Stokes vector becomes

§= {E0:52+E0y2; E022-E0y2y ZEZEOIEOJD 0} . (18)

It is common practice to normalize the Stokes

vector, so we let

B+ Eo?=1,
where

Fy.= cosa, Ey,= sina.

Equation (18) then becomes
s= {1, cos2q, sin2q, 0}. (19)

Two special cases of linear polarization arise
when Ey,=0 (vertical polarization) and FEg,=0
(horizontal polarization). For these states, the
Stokes vectors are (in normalized form)

s=1{1, —1,0,0} (vertical polarization), (20a)
and

s={1,1,0,0} (horizontal polarization).(20b)

If we have E,,=Fy, and 6=0 or w, respectively,
then two more states of linear polarization in the
Stokes representation are

§=2{1,0, 1, 0}
§=2{1,0, —1, 0}.

(21a)
(21b)
b. Circular Polarization

For this state of polarization é=r/2 or §=
37/2 and Ey,= Eo. The Stokes vector is

s=2{1,0,0,1}
§=2{1,0,0, —1}.

(22a)
(22b)
c. Elliptic Polarization

With the aid of the normalizing conditions
following Eq. (18), we can write for elliptic

polarization
s= {1, cos2a, sin2«a coss, sin2asiné}. (23)

Of course, we could remain with the original

"W. A. Shurcliff, Polarized Light (Harvard University
Press, Cambridge, Mass., 1962).
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formulation in which case we have
§= {E0$2+E0y2, E’Oxz—Eoyz, ZEoony COS&,

9B Eoy sin}.  (24)

We note in passing that the Stokes parameters
for unpolarized light is obtained from Eq. (24)
by taking the time averages of the elements, the
result being

s=1{1, 0,0, 0}, normalized. (25)

These forms show us that if we have a radia-
tion field which we can represent as a Stokes
vector, then by comparing these new forms with
those presented in this section we can immediately
determine the state of polarization. In order to
gain some insight into a few of the physical proc-
esses producing polarized radiation, we now dis-
cuss some useful transformation matrices.

II. TRANSFORMATION MATRICES FOR THE
STOKES PARAMETERS

It is well known that when polarized light
interacts with an optical device such as a wave
compensator, a rotator, or a polarizer, its state
of polarization is altered. Consequently, a given
set of Stokes parameters must also transform to
a new set of parameters when an optical device
is placed in the path of a light beam. It was also
shown by Perrin that if we treat the Stokes
parameters as a column matrix, then a 4X4
matrix will transform the original parameters
to a new set of parameters. Thus, we write

s'="Ts, (26)

where s’ is a 4 X1 column matrix and T is a 4 X4
transformation matrix representing the optical
device or, for that matter, any mechanism which
transforms the Stokes parameters. We now deter-
mine the transformation matrices for a com-
pensator, a rotator, and a polarizer.

a. Compensator

A plane wave of some fixed but arbitrary
polarization is incident on a wave plate with its
fast axis parallel to the y axis (the phase increases
by €, while the slow axis is parallel to the r axis
(the phase decreases by ¢ ; the total phase differ-
ence is then 2e. The complex field components

EDWARD COLLETT

after passing through the wave plate are
gzl = EO:D exp[’l’.<5$_ 6) ]7
&, = Eoy exp[i(8,+¢) ],

where the primes refer to the output complex
amplitudes. According to the definitions of the
Stokes parameters, we find that Eqs. (27a) and
{27b) give

(27a)
(27b)

s0’ =88,/ *+8,/8,F = Kot+Eo =80, (28a)
8 =8,8,%—8,8,/ % =Eo2—Eo2=s1, (28b)
s =8,8,/%+8,/*8,/
= 2K, c0s(6426), (28¢)
and
8’ =1i(8,/8,/*—8,%8,)
=2l 0. Epy sin{642¢) . (28d)

Equations (28¢) and (28d) may be expanded
and the results expressed in terms of the original
Stokes parameters. Thus, we find that the trans-
formation matrix for a wave compensator whose
fast axis is parallel to the y axis is

10 0 0 )

!O 1 0 0 ‘
Tcomp: | (29)

00 c0s2€ sin2€1

|
0 0 — sin2 cos2e

b. Rotator

The input complex field components &, and §,
are rotated through an angle ¢. By the familiar
rotation relations, the output complex amplitudes
are then

&, = Iy, exp(id;) cosd+Eyy exp(i6,) sind,  (30a)
8,/ = — Fo, exp(18,) sind-+Fo, exp(48,) cosd. (30b)
From the defining equations, we find
S0’ =8,8/%+8&,8,/% = s, (31a)
5 =8.8,/%~8,8,/*
=& cos2d-+s, sin2d, (31b)
' =8,/ 8,/%+8,/%8,
= — 3 Sin28 48, cos24, (31¢)
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0 — sin2% cos29 O

and
8’ =1(8/8,/ —8,/%8,)) =ss. (31d)
The transformation matrix for a rotator is then
1 0 0 0
0 cos2d sin2d Ol
Trot= ; . (32)

0 0 0o 1

¢. Polarizer

For a polarizer whose axes are parallel to the
z and y axes and having amplitude transmission
factors P, and P, respectively, the output com-
plex amplitudes are

& = P,Fy, exp(48,), (33a)
&,/ =P, Fy, exp(1d,). (33b)
We readily find that
s’ =[(P+P2) /2]s0+[(P2—P2) /2]s;, (34a)
st =[(PS—Py) /2]se+[(P2+P/)/2]s1, (34D)
s’ = P,Pys,, (34c¢)
and
8’ =P.P,s3; (34d)

s0, the transformation matrix for a polarizer is

(P24+P2 P2—P7 0 0 )

i

| P2—Pp P2+P? 0 0 |
]vnol =

2 0 0 °P.P, 0

) 0 0 2P.P,

(35)

In order to describe the behavior of a polarizer at
any angle, the matrix above must be transformed
to an arbitrary coordinate axis. This is done by
the transformation equation®

Tpo1(#) = Trot (—28) Tpo1Tror (28) (36)

where ¢ is defined as the angle between the

polarizer transmission axis and the z axis.

8 B. L. O’Neill, Introduction to Statistical Optics, (Addi-
son-Wesley Publ. Co., Inc., Reading, Mass., 1963) p. 139.
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Fia. 1. Vector relations for a moving charge.

A further discussion of these results can be
found throughout the cited references. With a
knowledge of these matrices as references, we
now obtain the Stokes parameters for some funda-
mental physical phenomena using complex nota-~
tion for the fields.

III. THE ZEEMAN EFFECT

The fact that accelerating charges emit elec-
tromagnetic radiation is well known. The Stokes
parameters afford a very convenient representa-
tion of the intensity and polarization of such
radiation. As is shown by Jackson, the electric
component of the radiation field due to a rela-
tivistic accelerating charge is given by*

E(X, ) =(e/cR)[nx {(n—B) x$}1; (37)

where ¢ is the speed of light, ¢ =v is the velocity
of the charged particle, ¢ =¥ is the acceleration
of the charged particle, k= (1—n-3), ¢ is the
electric charge, and n=R/R is a unit vector
directed from the position of the charge to the
observation point.

The relation between the vectors X and n is
shown in Fig. 1. If the velocity of the charged
particle is much less than the speed of light, then
Eq. (37) reduces to the nonrelativistic equation

E(X,{)=(¢/R)[n x (nx¥) ]. (38)

We shall apply Eq. (37) in a discussion of syn-
chrotron radiation, while Eq. (38) shall be used
to discuss the classical Zeeman effect and the
scattering of electromagnetic waves by charged
particles. In the remainder of this section, we

9 J. D, Jackson, Classical Electrodynamics, (John Wiley
& Sons, New York, 1962), Chap. 14.
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Fra. 2. The motion of an electron in a magnetic field.

determine the Stokes parameters for the classical
Zeeman effect.

Consider an electron initially oscillating along
the line OP (see Fig. 2) with an angular frequency
wo and amplitude A at an angle x from the 2z axis.
If a uniform constant magnetic field is parallel
to the z axis (H=0He,), the electron precesses
counterclockwise as viewed along the positive 2z
axis towards the origin with an angular frequency
w.

From Fig. 2, the resolved components of the
electron position are

z=A sinx coswel sinwl, {39a)
y=A siny coSwl coswt, (39b)
z=A cosy coswyt, {39¢)

where
w=—eH /2me.

By using the well-known trigonometric identities
for products, we can write

2= (A/2) sinx[sinw;i— sinw_t],  (40a)
y=(A/2) sinx[ cosw i+ cosw_t], (40b)
z=A cosy cosw, (40c)

where

wi=wytw, W_ = wy— .

Following the familiar rule of writing Eq. (40)
in complex notation, we find

r=[—7(A/2) sinxJ[exp (iwil) — exp(iw_{) ],
(41a)

y=[(A/2) sinx]lexp(iw;t) + exp(dw_t) ], (41b)

COLLETT

and
2= (A cosy) exp(iwyl). (41c)

Differentiation of these equations with respect to
time yields

#=[7(A/2) sinx J[w:? exp (twst) —w_2 exp(iw_1) ],

(42a)
j=[—1(4/2) sinx]
X[w? exp(iw;l) +o ?exp(iw-t) ], (42b)
and
F=(—A cosx)w® exp (tul) . (42¢)

The radiated field as given by Eq. (38) in ex-

panded form is
E(X, t) = (—e/c’R)[e,(e,-¥) —¥],  (43)

where

v =ie,+{e,+%e., (44)

and where we have replaced n by e,, since the
electron is oscillating along the radial direction
in a spherical coordinate system. In spherical co-
ordinates, we easily find that the term within
the brackets of Eq. (43) is

e (e v)—v
= —eg (& cosd cosgp+ii cosd sing—¥ sind)
—ey(—i sing+ij cosp), (45)

which shows that the radiation field is transverse.
The field components are then found from Eq.
(43) to be

&s=(e/cR) (& cosd cosp-+jj cosd sing— £ sind),
(46a,)
&s= (e/2R) (— 1 sing+ij cose). (46b)
Substitution of Eq. (42) into Eq. (46) yields
&= (eA/2¢R) [7 siny cos?{w,? exp[1(wit+¢) ]

—w_ ?explz(w_ti—¢)]}

+ 2w¢? cosy sind exp (twet) ],  (47a)
and
8o = {24 siny/2¢*R) {w 2 exp[i(wi—0) ]
+w ?expli(w_t+¢) ]} {47h)
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The Stokes parameters are defined in spherical
coordinates to be

So= 8080*+8¢8¢*, (483:)

8= 8,980*'—'&;.8@5*, (48b)

Sy = 808¢*+ 80*84,, (480)
and

83=Z.(8,}8¢*“80*8¢) . (48(1)

ed

CLASSICAL PHYSICS

2(wyttw b)) (14 cos?d) +4wet sin%d

— 2 (wttw_?) sin?d+4wet sin2d

719

We now form the appropriate products as shown
by Eq. (48) using Eq. (47), drop all cross-
product terms, and then average x over a sphere
of unit radius. In addition, Eq. (39) has been
written such that the observation angle ¢ is zero,
which means the radiation is being viewed in the
z—= plane. Consequently, we must also set ¢
equal to zero in Eq. (47). We then find that the
Stokes vector for the classical Zeeman effect is

2
§= < ) (49)
2c¢2R 0
$(wit—w %) cosd?
We now examine the Stokes vector at =0, n/2, =, and 37/2. For 4=0, we find
B ( 1) ( 1}7
2 0 i 0
4/ ed \ ‘ i
Sy=0 = §(2TR> wyt Fo_t | ' (50)
¢ {0 0
L
B UJ [—IJ |

We thus see from Eqgs. (22a) and (22b) that we observe two radiating components, w, and »_, which
are right- and left-circularly polarized. At ¢ =x/2, we have

( (wpttw b+ 2w04]

wittw *) 20t

2/ e\t | ¢
o0
B J{ 1]’ 1]‘ ( 11‘7
2 -1 —1 1)
So—r2= g(z_c%) wyt | 0) Fot . +2wq* (0 (51)
Y OJ! o

There are now three components, two of which
are linearly horizontally polarized while the third
is linearly wvertically polarized. At ¢==, we see
that we obtain the same results found at #=0

except that the circular polarization of the com-

ponents is reversed. Similarly, at ¢=37/2, we

obtain the same Stokes vector as Eq. (51).
Finally, the normalized intensity at #=0 is

Downloaded 04 Aug 2012 to 152.14.136.96. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission
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given by the first element of the Stokes vector

Sp= - w (52)
while at 9=x/2 we have
So= (w+4/’/2> + (w74/2) +w04. (53)

These equations show us that the relative in-
tensities of the components w,, w_, and w, are
1:1:0 and %:3:1, respectively. As a last point,
if the magnetic field is removed, then H=0 and
wy=w_=wy and Eq. (49) is easily shown to
reduce to the Stokes vector for unpolarized light.

Other useful facts about the polarization such
as the ellipticity, orientation angle, and the
degree of polarization are readily obtained from
FEqs. (12), (13), and (14), respectively.

Iv. SYNCHROTRON RADIATION

The radiation emitted from highly relativistic
charges is known as synchrotron radiation after
its discovery in the operation of the synchrotron.
The electric field component due to the relativ-
istically moving charge is given by Eq. (37),

EX 1) =(e/c’R)[nx {(n—3) x3}]. (37)

The motion of a charged particle in a uniform
and constant magnetic field is illustrated in
Fig. 3.

From the equation of motion, the particle
velocity is found to be (assuming the veloeity of
the particle along the z axis is negligible)

V= —qw(sincwie,— coswie,), (54)
where
w= (eH /me) (1—2c2) V2,
In complex notation, Eq. (54) becomes
v=qw[ie,+e, | exp (iwt), (55)
T 1+

a? {1~ B cord )5 R2

L

1 (3, Bekefi, Radiation Processes in Plasmas, (John Wiley
& Souns, Tne.. New York, 1066), n. 177.

EDWARD COLLETT

so the acceleration is
¥ =aw?[ —e,+ie, | exp (dwt). (56)

The amplitudes of the complex velocity and ac-
celeration in spherical coordinates are then found
to be

(37)

V= —aw’e ¥ sinde,+ cosdes—ies]. (DY)

v =1awe [ sinde,+ cosdes—iey ],

If we are far from the source of radiation, which
is the usual condition, then from Fig. 3 we see
that

n~X/R=e,. (59)

With this simplification, we now write Eq. (37)
in complex notation as

E(X: t) = (e//(a'(sR) {[er x (er XV)]
~[e, x ((v/c) x¥¥) ]}.

We have written the acceleration in the second
term of Kq. (60) as the complex conjugate ac-
cording to the usual rule when we vector multiply
complex quantities. The evaluation of the terms
within the curly braces of Eq. (60) leads to the
complex components of the field,

(60)

= (e/c*PR) (aw’e™ " cosd). (61a)

&s= (—e/c*PR) [law?e " — (a%?/c) sing].  (61b)

Since the Stokes parameters represent the energy
per unit area detected at an observation point
at a time ¢ due to radiation emitted by the charged
particle at a time ¢ ={—R({') /¢, we must trans-
form the Stokes parameters from s to sedt/dt,
ete. The effect of this is to simply change « to «°
in the denominator of the final expression given
below. Forming the products as given by Eq.
(48), we find the relativistic Stokes vector after
setting ¢ to zero as explained earlier

cosf"zﬂ smzﬁ W ]
81 f | sm%‘ )
“ + B2 (62)
0 bm%‘/ b’ |
| l
—2 cosd | L 0
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Comparing this result with Eq. (23), we see that
the emitted radiation is elliptically polarized.

For the special case of #=0, the Stokes vector
for a relativistically moving charge is

1)

2e3gH 0
FA-B)R |

-1

which shows that the radiation is left circularly
polarized. For ¢=x/2 we find that the Stokes

(63)

Ss=0=

vector is
(1) 17
—1 1
62(12 4
$y=rj2= —E;;_ +52 ’ (64)
O' 0
of (o)

where =v/c=aw/c. At this position in the field,
the radiation is observed to have a vertically
polarized component and a relativistically hori-
zontally polarized component. At d¢=m, we see
that the radiation according to Eq. (22a) is
right cireularly polarized.

For 8«1, the nonrelativistic regime, Eq. (62)
reduces to

1-+ cos®d
et | T sin?y )
s=— D . , (65)
—2 cosd

where w=e¢H /me. This is the Stokes vector for a
charge rotating in a circle in the 2—y plane.

&= (—e/mc?R) [Ey, exp(18,) cosd cos¢+Ey, exp(#8,) cosd sing ],

and

&= (—e/mcR) [ — By, exp(48,) sing—+ Ey, exp(id,) cose].
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X

Fia. 3. Path of a charged particle in a magnetic field.

V. THOMSON SCATTERING

We now determine the Stokes parameters for
the scattering of electromagnetic waves by an
electron located at the origin of a Cartesian co-
ordinate system. This is illustrated in Fig. 4.
The incident electric field is transverse and
propagating along the z axis and is represented
by the equation

E(X,t) =E(X)e*,
where
E(X) =E,,; exp(i5,) e, Eyy exp(id,) e, (66)
The motion of the electron obeys the equation
v=—(¢e/m)E

= — (e/m) [Eo, exp(id,) €, Eqy exp(id,) e, Je™*;

(67)
so, the complex acceleration amplitude is
v = — (e/m) [Eq exp(46,) e+ Eo, exp (i5,) €,]. (68)

Transforming Eq. (68) to spherical coordinates
and substituting the result into Eq. (43), we find
the components of the field are transverse and
are given by

(69a)

(69b)

The Stokes vector for Thomson scattering is then easily found from Eqgs. (48) and (69) to be

f $o(14 cos?¥) —s; sin?d cos2¢ — s, sin’d sin2¢

64
8 —
mActR?

=% sin?d s (14 cos®?) cos2¢—s, (14 cos?¥) sin2¢
—28; cosd sin2¢-+2s, cosd cos2e

283 cosd?

(70)
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In expressing this result, we have replaced the terms involving the amplitudes and phase of the in-
cident wave by the incident Stokes parameters. Since we have incident radiation which is reradiated
by the electron, we can write the transformation matrix. In addition, the angle ¢ is arbitrary and can
be set equal to zero. The transformation matrix is seen from Eq. (70) to be

!;(H- cos?d  — sin% 0 0
” ot i — sin?¥ (1 cos®¥) 0 0 j "
R 0 2cosw 0 | .
L o 0 0 2 cos&‘)E

which we see from Eq. (35) is the equation of a
polarizer.

If the incident radiation is initially unpolar-
ized, then the initial Stokes vector is {sg, 0, 0, 0},
and we find the scattered Stokes parameters to
be

;/(H— cos?d) 8
1/ e\ sinds,
5= 2 (mczl?) (72)
i 0
|
L 0

This result states that the initial unpolarized
radiation becomes linearly polarized upon being
scattered by the electron.

The scattering cross section is defined to be

do  energy radiated/unit time,/unit solid angle

d2  incident energy/unit area/unit time

(73

) /Z‘E
/*

%

Fie. 4. Scattering of electromagnetic waves by an electron.

From Eq. (72), we see that the ratio of the
scattered to incident Stokes parameters is the
differential cross section

do/dl= (e/mc?)*%: (14 cos?d). (74)

Equation (74) is the well-known Thomson
formula for the scattering of radiation by a free
charge and is appropriate for the scattering of
X rays by electrons or gamma rays by protons.
The degree of polarization of the scattered radia-
tion is found from Eq. (14) to be

® = [sin%/ {1+ cos®3) . (75)
VI. REFLECTION OF ELECTROMAGNETIC
WAVES BY DIELECTRIC SURFACES

As another example of the use of the Stokes
parameters to describe physical phenomena in
classical physics, we now consider the polariza-
tion state of a reflected electromagnetic wave at a
dielectric boundary. The electric fields at the
boundary separating two media with permittivity
and permeability constants e, w, and e, s, re-
spectively, is given by Fresnel’s equations (in
complex notation)

Uz COST— a1y COSF

Emd = - - Fiexp(id.), (76a)
k2 COST-Hnnp COST
2us cOs?L .
Epo= - Eiexp(#s), (76b)
Us COST-F7uy COST
COST— ug COSY .
8oy = e = E\ exp(i)), (76¢c)

" pann COSTpg COSF

N, Tralli, Classical Electromagnetic Theory, McGraw-
Hill Book Ca., New York, 1963), Chap. 11.
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and

2us COST
21l COSTpg COST

&)= E exp(ady), (76d)
where 5= sinz/sinr. The subscripts m and b
refer to the reflected and refracted wave while the
symbols || and L are the components in the plane
of the paper and perpendicular to the paper. This

is llustrated by Fig. 5. For a dielectric, us=pu;=1
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and
8=1(8L8 ¥ —E.%E)))
= 2E_LE|] sin&, (78(‘1)

where 6=06.—0;. The Stokes parameters for
reflections -are

So= 8m.L8m_L*+8mg | 8m| 1*

[ sin (¢—7) ]2 [tan(i—r) ]2
T =|——>| B2+ | ———| B (79
so that Eq. (76) reduces to Sniitn | 2 + tan(igr) | 21 (79a)
Emr=[— sin({—7r) /sin(¢-+r) JELexp(i8L), (77a) 1= B 1B — By o
&1=[2 sinr cosi/sin(i+r) ELexp(#61), (77b) L. 5 - . )
_ [sin(e—n) e tan(7—7) ﬁE’ 2 (79h
&niy=[tan(i—r) /tan(s+r) JE| exp(46,;), (77c) " lsinG+n ] T LtanG+n ] T (79b)
and $2= 818 ¥+ Endt¥Em s
&y =[2sinr cosi/sin (44r) cos(i—r) JE| exp(48);). sin? (i—7) cos(4-r)
= E.E s, (79
(77d) 2 [cos(i-—r) sin2(i+r)] Ly coss,  (79¢)
The incident Stokes parameters are defined to be gnd
So=818.%+88)* 83 =1(8n1&n|| ¥ — Ens*Epyy)
=E.24+E2, 78 in?(i— ;
sl (Ba) o [sm (1=r) cos(i) J BB sins. (794)
S1= 8185 — 88 * cos(t—r) sin*(i-4-r)
=Bl —E\%, (78b)  Expressing Eq. (79) only in terms of the incident
S2= 818, * 8.8 Stokes‘para.met'ers by using. Eq. (78),th<? trags—
formation matrix for reflection from a dielectric
=2F.E) coss, (78¢) surface is found to have the form
[sinz(i—r) tan%i—r)] [sin2(z’—1") ta,nz(i—f):l 0 0
sin2(7-7) tan2(i+7) 1 | sin2(d+7) tan?(44r)
[sin2(z'—~r) tan%i—w)] [sinz(i—r) n tanz(z'—r)] 0 0
| Lsin*(¢+r)  tan®(d+r) ) |sin(i+r) tan?(¢-+r)
Tpol= -
2
—2sin?(t—r) cos(z+r)
] 0 0 cos({—r) sin?(i-7) 0
0 0 —2 sin?(i—r) cos(i-+r) \

If we now compare the matrix of Eq. (80) with
Eq. (35), we see that a dielectrie, e.g., glass,
which reflects electromagnetic radiation behaves
as a polarizer; the form of Eq. (80) is the analog

cos (1—r) sin?(i-+r) J
(80)

of a polarizer. We also see that if the incident
radiation is unpolarized so the normalized Stokes
vector is {1, 0, 0, 0}, the resultant vector is
linearly polarized, while the degree of polarization
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|
j

Fia. 5. Reflection and refraction of a plane wave,

is found to be

®= sin?(i—7r) /[1+ cos?(i—7) . (81)
When i+r=7/2 (the Brewster angle), the
transformation matrix of Eq. (80) becomes
11 0 0
|
110 0
T=1% cos?2; ' - (82)
0 0 0 o
o 0 0 o

If the initial radiation is unpolarized, the reflected
Stokes vector is found to be proportional to
{1, 1, 0, 0} and the reflected radiation is com-
pletely horizontally polarized according to Eq.
(20b). In other words, there is no longer any
vertical component of the field in the reflected
wave.

If the angle of incidence is greater than the
critical angle, we have total reflection of the
incident wave. In this case, Fresnel’s equations
reduce tc

Epi=FEyexp[t(est8r)], (83a)
where
tan(er/2) = (9% sin% —1)1/2/y cost,
and 7 is the index of refraction of the denser

medium in which the incident wave is propa-
gating. Similarly, the parallel field component is

EDWARD COLLETT

found to be
Enyi=E exp[i(e)+6)1) ], (83b)
where
tan(e/2) =7(y?sin%—1)12/cost.

The Stokes parameters for the case where we
have total reflection are easily found to be

Sg= gmigml*—l—gmc ;8m| g*

—EO4E? (84a)
81=8m.|.8m1.*-8m”8m|;*
—Es— B (84b)
8o = Sm.l.gmg]*—-l— 8m.!.*8m”
=2EJ.EH COS(5+€), (840)
and
85 =1 (818 ¥ — 8t ®Enyy)
=2F.E); sm(é+e); (84d)
where

5=5_L'—6|§ and

€= €L €11,

matrix for total reflection
(84c) and (84d) is

The transformation
after expanding Eqs.

l(l 0 0 0
0 1 0 0
Ttot refl = ‘ r . (85)
‘00 cose  sine
| |
0 0 ~—sine cose)

Comparing Eq. (85) with Eq. (29), we see that
a dielectric in which there is total reflection can
be used as a wave compensator.

As a final point, if the incident wave is initially
linearly polarized the Stokes vector is given by
(19)

s= {1, cos2q, sin2e, 0}.

The resultant reflected Stokes vector is found by
matrix multiplication of Egs. (85) and (19)
and the result is

(86)

s={1, cos2e, sin2a cose, sin2q sine}.

Thus for total reflection the linearly polarized
light, which is incident on the dielectric, becomes
elliptically polarized on reflection.
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VII. WAVE PROPAGATION IN A PLASMA

As a final example of the use of the Stokes
parameters to describe radiation phenomena in
classical physies, we now consider the polarization
state of a wave propagating in a plasma. In addi-
tion, there is a uniform and constant magnetic
field present. If the direction of propagation of
the electromagnetic wave is parallel to the mag-
netic field, then one can show that the wave equa-
tion becomes!

¢t ot & (1+w,/w)
where
wpl = uge’c®/m, w,=eB/m
The solution of Eq. (87) is
E(r,t) =E;exp[ —t(wt—xy-1)],  (88)

where

e )
e w? 1dtwg/w/

Now the interesting case arises when the in-
cident waves after passing through the plasma
are represented by

E.(r,t) =Epexp[ —i(wt—xy+1) +148,], (89%a)

Ey(r, t) =By exp[ —i(wt—x_-1)+4,]. (89b)

In complex notation, these field amplitudes are

&= Fy. exp(tey1+145,), (90a)
and

8y=FEo, exp(ix_-1+15,). (90b)

Forming the Stokes parameters in the usual way,
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we find
8o’ =8y, (91a)
81/=81, (glb)
8’ =2F,Foy cos(x-1+3), (91¢)
and
83,=2E0xE0y sin(n-r—!—&); (91d>

where x=x_—«x and §=4§,—4,. The transforma-
tion matrix for the plasma is then seen to be

10 0 0 )
01 0 0
Tplasma= (92)
0 0 COSK*T sInk-r }
0 0 — sink-r COSK-rJ

Thus, a plasma that has a magnetic field present
behaves as a wave compensator.

VIII. CONCLUSIONS

We have shown that the Stokes polarization
parameters provide a simple and elegant formula-
tion of the description of electromagnetic radia-
tion in eclassical electrodynamics. The Stokes
parameters are also known to be directly related
to the elements of the density matrix in quantum
mechanics. Consequently, they are part of the
bridge between classical and quantum electro-
dynamics and should be part of every modern
treatment of optics and electromagnetic theory.
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